CHAPTER-8 APPLICATION OF INTEGRALS 01 MARK TYPE QUESTIONS

Q. NO	QUESTIONS	MARK
1.	The area of the region bounded by $y = \cos x$ between $x=0$ and $x=\pi$ is	1
	a) 2sq unit	
	b) 4sq unit	
	c) 6sq unit	
	d) 1sq unit	
2.	The area of the region bounded by the parabola $y^2 = x$ and the straight line $y = x/2$ is	1
	a) 1/3 sq unit	
	b) 2/3 sq unit	
	c) 3/3 sq unit	
	d) 4/3 sq unit	
3.	The area bounded by the curve $y^2 = 4ax$ and axis between $y = -a$ and $y = a$ is	1
5.	a) A^2	1
	b) $6a^2$	
	c) $A^2/6$	
	d) $A^2/2$	
4.	The area of the region bounded by the curve $x=2y+3$ and the line $y=1$ and $y=-1$ is	1
4.	a) 2 sq unit	1
	b) 4 sq unit	
	c) 6 sq unit	
	d) 8 sq unit	
5.	The area bounded by the curve $y=x^2 - 1$ and the straight line $x + y=3$	1
	a) $\frac{\sqrt{17}}{\sqrt{17}}$ sq unit	
	a) $\frac{\sqrt{17}}{7}$ sq unit b) $\frac{7\sqrt{17}}{6}$ sq unit	
	c) $\frac{17\sqrt{17}}{6}$ sq unit	
	d) 4 sq unit	
6.	The area of the region bounded by $y = x-2 $, $x=1$ and $x=3$ and x -axis is	1
	a) 4sq unit	
	b) 3sq unit	
	c) 2sq unit	
	d) 1 sq unit	
7.	Area of the triangle whose vertices formed from the x-axis and the line $3- x $ is	1
	a) $\frac{9}{2}$ sq. unit	
	b) $\frac{3}{2}$ sq. unit	
	c) 9sq.unit	

	d) 3 sq unit	
8.	Find the area of the region $\{(x, y) : x^2 \le y \le x\}$.	1
	a) $\frac{1}{3}$ sq. unit	
	b) $\frac{1}{2}$ sq. unit	
	c) $\frac{1}{6}$ sq. unit	
	d) $\frac{1}{9}$ sq. unit	
9.	If $y=2 \sin x + \sin 2x$ for $0 \le x \le 2\pi$ then area enclosed by the curve and the x-axis is	1
	a) $\frac{9}{2}$ sq. unit	
	b) 8sq. unit	
	c) 12sq. unitd) 4sq. unit	
10.	The area of the region bounded by the curves $y=x$, $x=e$ and $y=\frac{1}{x}$ and all the positive x-axis is	1
	a) $\frac{1}{2}$ sq. unit	
	b) $\frac{3}{2}$ sq. unit	
	c) ² 1sq. unit	
	d) $\frac{5}{2}$ sq. unit	
11.	The area of the region bounded by the circle $x^2 + y^2 = 1$ is (a) 2π sq. units (b) π sq. units	1
	(c) 3π sq. units (d) 4π sq. units	1
12.	The area of the region bounded by the curve $y = x + 1$ and the lines $x = 2$ and $x = 3$ is	
	(a) $\frac{7}{2}$ sq. units (b) $\frac{9}{2}$ sq. units	1
	(c) $\frac{11}{2}$ sq. units (d) $\frac{13}{2}$ sq. units	1
13.	The area of the region bounded by the curve $y^2 = 4x$, y-axis and the line $y = 3$ is	
	(a) 2 (b) $\frac{9}{4}$	1
	(c) $\frac{9}{3}$ (d) $\frac{9}{2}$	1
14.	The area bounded by $y = 2 - x^2$ and $x + y = 0$ is	
	(a) $\frac{7}{2}$ (b) $\frac{9}{2}$	1
	(c)9 ² (d) none of these	1
45	The same hand distributes of the second state of the second state in the second state is	
15.	The area bounded by the parabola $x = 4 - y^2$ and y-axis, in square units, is (a) $\frac{3}{22}$ (b) $\frac{32}{2}$	
	(a) $\frac{3}{32}$ (b) $\frac{32}{3}$	1
	(c) $\frac{33}{2}$ (d) $\frac{16}{3}$	
16.	Area lying between the curve $y^2 = 4x$ and $y = 2x$ is	
	(a) $\frac{2}{3}$ (b) $\frac{1}{3}$	1
	(c) $\frac{1}{4}$ (d) $\frac{3}{4}$	

17.	The area bounded by the parabola $y^2 = 4ax$, latus rectum and x-axis is	1
	(a) 0 (b) $\frac{4}{3}a^2$ (c) $\frac{2}{3}a^2$ (d) $\frac{a^2}{3}$	1
18.	The area of the region bounded by the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$	
	(a) πab (b) $\pi a^2 b^2$ (c) $2\pi ab$ (d) ab	1
19.	The area of the region bounded by the circle $x^2 + y^2 = a^2$	
	(a) $2\pi a$ (b) πa^2 (c) $2\pi a^2$ (d) None of these	1
20.	The area of the region bounded by the curve $\frac{x^2}{4} + \frac{y^2}{9} = 1$	
	(a) 6π (b) 36π (c) 18π (d) None of these	1
21.	The area enclosed between the curve $y=x^2$ and $y=\sqrt{x}$ is	1
	A) ¼ sq. unit B) ½ sq. unit	
	C) 4 sq. unit D) $1/3$ sq. unit	
22.	The area enclosed among the curves 2x-3y=0, X axis, X=3 and X= 5 is	1
	A) 16 sq. units B) 8 sq. units	
	C) 4 sd. units D) 16/3 sq. units	
23.	Area bounded by the lines y=2+x, y= 2-x and x=2 is	1
	A) 3 sq. units B) 4 sq. units	
	C) 8 sq. units D) 16sq. units	
24.	Area lying in the first quadrant and bounded by the circle $x^2+y^2=4$, and the	1
	lines $x=0$ and $x=2$ is	
	A) π B) $\pi/4$	
25.	C) $\pi/3$ D) $\pi/2$	1
25.	The area of the region bounded by the curve $y^2=4x$, Y axis and the line y=3 is A) 2 B)9/4	L T
	C)9/3 D) 9/2	
26.	The area bounded by the curves $y^2=4ax$ and its latus rectum is	1
	A) $4/3 a^2 sq$. Units B) $8/3 a^2 sq$. Units	-
	C) 16/3a ² sq. Units D)None of these	
27.	Area bounded by the curve y= sinx between the ordinates x=0 and x= π is	1
	A) 2sq. Units B) 4 sq. Units	
	C) 3 sq. Units D) 1 sq. Units	
28.	Assertion (A): The area bounded by the circle $x^2+y^2= 16$ is 16π sq. Units.	1
	Reason (R): We have x ² +y ² = 16, which is circle having center at (0,0) and radius	
	4 units.	
	(A) Both A and R are true and R is the correct explanation of A.	
	(B) Both A and R are true but R is not the correct explanation of A.	

	(C) A is true but R is false.	
	(D) A is false but R is true.	
29.	Assertion (A): The area bounded by y ² =8x and x ² =8y is 64/3 sq. units. Reason (B): The area bounded by y ² =4ax and x ² =4by is 16ab/3 sq. units. The correct answer is	1
	(A) Both A and R are true and R is the correct explanation of A.	
	(B) Both A and R are true but R is not the correct explanation of A.	
	(C) A is true but R is false.(D) A is false but R is true.	
	(D) A is faise but K is true.	
30.	The area of the circle $x^2 + y^2 = 16$ exterior to the parabola $y^2 = 6x$ is	1
	A) 4/3(4π-√3) B) 4/3(4π+√3)	
	C) 4/3(8π-√3) D)4/3(8π+√3)	
31.	Area (in square unit) lying in the first quadrant and bounded by the circle $x^2 + y^2 = 4$ and the line x=0, x=2 is	1
	(a) π (b) $\frac{\pi}{2}$	
	(b) $\frac{\pi}{2}$ (c) $\frac{\pi}{3}$	
	(d) $\frac{\pi}{4}$	
	4	
32.	Area of the region bounded by the curve $y^2 = 4x$, y-axis and the line y=3 is (in sq unit)	1
02.	(a) 2	
	(b) 9/4 (c) 9/5	
	(d) 9/2	
33.	Area of the region bounded by the curve $y^2 = 4x$ and y = 2x is (a) $2/3$	1
	(b) 1/3	
	(c) 1/4	
24	(d) 3/4 The area enclosed between the curve $y^2 = x$ and $y = x $ is	1
34.	(a) $1/6$	
	(b) 1/3	
	(c) 2/3 (d) 1	
35.	The area enclosed between the curve $y = x$ and	1
	$y = 2x - x^2$ (in square units) is	
	(a) 1/2 (b) 1/6	
	(c) 1/3	
26	(d) 1/4	1
36.	The area enclosed between the curve $y = ax^2$ and $x = ay^2$, $(a > 0)$ is 1 square unit then the value of a is	1
	(a) $\frac{1}{\sqrt{3}}$	
	(b) $\frac{1}{2}$	
	(c) $\frac{1}{1}$	
	(d) $\frac{1}{3}$	
37.	The area (in square units) bounded by the curves $y = \sqrt{x}$, $2y - x + 3 = 0$, x- axis and lying in the first	1
57.	quadrant is	1

1		
	(a) 9	
	(b) 36 (c) 18	
20	(d) $\frac{27}{4}$	1
38.	The area enclosed between the parabolas $y^2 = 4x$ and $x^2 = 4y$ is (in Square units) (a) 4/3	1
	(a) 4/5 (b) 1/3	
	(b) 1/3 (c) 16/3	
	(d) 8/3	
39.	Smaller area enclosed by the circle $x^2 + y^2 = 4$ and the line $x + y = 2$ is (a) $2(\pi - 2)$	1
	(a) $2(\pi - 2)$ (b) $\pi - 2$	
	(c) $2\pi - 1$	
	(d) $(d)2(\pi + 2)$	
40.	The area enclosed by the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ is equal to	1
	(a) $\pi^2 ab$	
	(a) πab (b) πab	
	(c) $\pi a^2 b$	
	(d) πab^2	
41.	The area bounded by the parabola $y^2 = 8x$, the x-axis and the latus rectum is	1
	(a) $16/3$ (b) $23/3$ (c) $32/3$ (d) $16\sqrt{2}/3$	
42.		1
	If the area bounded by y-axis and curves $y = \cos x$ and $y = \sin x$, $0 \le x \le b$ is $(\sqrt{2} - 1)$ sq.	
	units then the value of b is	
	(a) π (b) $\pi/2$	
	(a) π (b) $\pi/2$ (c) $\pi/4$ (d) none of these	
	(c) 1/4 (d) none of these	
10	The area bounded by the survey $x^2 = x^2$ and the lines $x = 0$ and $y = 5$ is	1
43.	The area bounded by the curve $y^2 = x - 4$ and the lines $y = 0$ and $y = 5$ is	1
43.		1
	(a) 38/3 (b) 76/3 (c) 19/3 (d) 57/3	
43.	(a) $38/3$ (b) $76/3$ (c) $19/3$ (d) $57/3$ The area bounded by curve $y = \sin 2x$, x-axis and the lines $x = \pi/4$ and $x = 3\pi/4$ is:	1
	(a) 38/3 (b) 76/3 (c) 19/3 (d) 57/3 The area bounded by curve $y = \sin 2x$, x-axis and the lines $x = \pi/4$ and $x = 3\pi/4$ is: (a) 1 sq. units (b) 2 sq. units	
	(a) $38/3$ (b) $76/3$ (c) $19/3$ (d) $57/3$ The area bounded by curve $y = \sin 2x$, x-axis and the lines $x = \pi/4$ and $x = 3\pi/4$ is: (a) 1 sq. units (b) 2 sq. units (c) 4 sq. units (d) 3 2sq. units	
	(a) 38/3 (b) 76/3 (c) 19/3 (d) 57/3 The area bounded by curve $y = \sin 2x$, x-axis and the lines $x = \pi/4$ and $x = 3\pi/4$ is: (a) 1 sq. units (b) 2 sq. units	
44.	(a) $38/3$ (b) $76/3$ (c) $19/3$ (d) $57/3$ The area bounded by curve $y = \sin 2x$, x-axis and the lines $x = \pi/4$ and $x = 3\pi/4$ is: (a) 1 sq. units (b) 2 sq. units (c) 4 sq. units (d) 3 2sq. units	1
44.	(a) $38/3$ (b) $76/3$ (c) $19/3$ (d) $57/3$ The area bounded by curve $y = \sin 2x$, x-axis and the lines $x = \pi/4$ and $x = 3\pi/4$ is: (a) 1 sq. units (b) 2 sq. units (c) 4 sq. units (d) 3 2sq. units Area under the curve $y = V(b^2 - x^2)$ included between the lines $x = 0$ and $x = b$ is:	1
44.	(a) $38/3$ (b) $76/3$ (c) $19/3$ (d) $57/3$ The area bounded by curve $y = \sin 2x$, x-axis and the lines $x = \pi/4$ and $x = 3\pi/4$ is: (a) 1 sq. units (b) 2 sq. units (c) 4 sq. units (d) 3 2sq. units Area under the curve $y = V(b^2 - x^2)$ included between the lines $x = 0$ and $x = b$ is: (a) $\pi b^2/2$ (b) $\pi b/2$ (c) $\pi b/4$ (d) $\pi b^2/4$	1
44. 45.	(a) $38/3$ (b) $76/3$ (c) $19/3$ (d) $57/3$ The area bounded by curve $y = \sin 2x$, x-axis and the lines $x = \pi/4$ and $x = 3\pi/4$ is: (a) 1 sq. units (b) 2 sq. units (c) 4 sq. units (d) 3 2sq. units Area under the curve $y = V(b^2 - x^2)$ included between the lines $x = 0$ and $x = b$ is: (a) $\pi b^2/2$ (b) $\pi b/2$ (c) $\pi b/4$ (d) $\pi b^2/4$	1
44.	(a) $38/3$ (b) $76/3$ (c) $19/3$ (d) $57/3$ The area bounded by curve $y = \sin 2x$, x-axis and the lines $x = \pi/4$ and $x = 3\pi/4$ is: (a) 1 sq. units (b) 2 sq. units (c) 4 sq. units (d) 3 2sq. units Area under the curve $y = V(b^2 - x^2)$ included between the lines $x = 0$ and $x = b$ is: (a) $\pi b^2/2$ (b) $\pi b/2$	1
44. 45.	(a) $38/3$ (b) $76/3$ (c) $19/3$ (d) $57/3$ The area bounded by curve $y = \sin 2x$, x-axis and the lines $x = \pi/4$ and $x = 3\pi/4$ is: (a) 1 sq. units (b) 2 sq. units (c) 4 sq. units (d) 3 2sq. units Area under the curve $y = V(b^2 - x^2)$ included between the lines $x = 0$ and $x = b$ is: (a) $\pi b^2/2$ (b) $\pi b/2$ (c) $\pi b/4$ (d) $\pi b^2/4$ The area bounded by the curve $y = \tan^2 x$, x-axis and ordinates $x = 0$ and $x = \pi/4$ is	1
44. 45.	(a) $38/3$ (b) $76/3$ (c) $19/3$ (d) $57/3$ The area bounded by curve $y = \sin 2x$, x-axis and the lines $x = \pi/4$ and $x = 3\pi/4$ is: (a) 1 sq. units (b) 2 sq. units (c) 4 sq. units (d) 3 2sq. units Area under the curve $y = \sqrt{b^2 - x^2}$ included between the lines $x = 0$ and $x = b$ is: (a) $\pi b^2 / 2$ (b) $\pi b / 2$ (c) $\pi b / 4$ (d) $\pi b^2 / 4$ The area bounded by the curve $y = \tan^2 x$, x-axis and ordinates $x = 0$ and $x = \pi/4$ is (a) $\pi/4$ (b) $1 + \pi/4$	1
44. 45. 46.	(a) $38/3$ (b) $76/3$ (c) $19/3$ (d) $57/3$ The area bounded by curve $y = \sin 2x$, x-axis and the lines $x = \pi/4$ and $x = 3\pi/4$ is: (a) 1 sq. units (b) 2 sq. units (c) 4 sq. units (d) 3 2sq. units Area under the curve $y = V(b^2 - x^2)$ included between the lines $x = 0$ and $x = b$ is: (a) $\pi b^2 / 2$ (b) $\pi b / 2$ (c) $\pi b / 4$ (d) $\pi b^2 / 4$ The area bounded by the curve $y = \tan^2 x$, x-axis and ordinates $x = 0$ and $x = \pi/4$ is (a) $\pi/4$ (b) $1 + \pi/4$ (c) $1 - \pi/4$ (d) none of these	1 1 1 1
44. 45.	(a) $38/3$ (b) $76/3$ (c) $19/3$ (d) $57/3$ The area bounded by curve $y = \sin 2x$, x-axis and the lines $x = \pi/4$ and $x = 3\pi/4$ is: (a) 1 sq. units (b) 2 sq. units (c) 4 sq. units (d) 3 2sq. units Area under the curve $y = \sqrt{b^2 - x^2}$ included between the lines $x = 0$ and $x = b$ is: (a) $\pi b^2 / 2$ (b) $\pi b / 2$ (c) $\pi b / 4$ (d) $\pi b^2 / 4$ The area bounded by the curve $y = \tan^2 x$, x-axis and ordinates $x = 0$ and $x = \pi/4$ is (a) $\pi/4$ (b) $1 + \pi/4$ (c) $1 - \pi/4$ (d) none of these If area bounded by the curve $y(1 + 4x^2) = 1$, x-axis and ordinate $x = 0$ and $x = a$ is $\pi/8$ sq.	1
44. 45. 46.	(a) $38/3$ (b) $76/3$ (c) $19/3$ (d) $57/3$ The area bounded by curve $y = \sin 2x$, x-axis and the lines $x = \pi/4$ and $x = 3\pi/4$ is: (a) 1 sq. units (b) 2 sq. units (c) 4 sq. units (d) 3 2sq. units Area under the curve $y = V(b^2 - x^2)$ included between the lines $x = 0$ and $x = b$ is: (a) $\pi b^2 / 2$ (b) $\pi b / 2$ (c) $\pi b / 4$ (d) $\pi b^2 / 4$ The area bounded by the curve $y = \tan^2 x$, x-axis and ordinates $x = 0$ and $x = \pi/4$ is (a) $\pi/4$ (b) $1 + \pi/4$ (c) $1 - \pi/4$ (d) none of these	1 1 1 1
44. 45. 46.	(a) $38/3$ (b) $76/3$ (c) $19/3$ (d) $57/3$ The area bounded by curve $y = \sin 2x$, x-axis and the lines $x = \pi/4$ and $x = 3\pi/4$ is: (a) 1 sq. units (b) 2 sq. units (c) 4 sq. units (d) 3 2sq. units Area under the curve $y = V(b^2 - x^2)$ included between the lines $x = 0$ and $x = b$ is: (a) $\pi b^2 / 2$ (b) $\pi b / 2$ (c) $\pi b / 4$ (d) $\pi b^2 / 4$ The area bounded by the curve $y = \tan^2 x$, x-axis and ordinates $x = 0$ and $x = \pi/4$ is (a) $\pi/4$ (b) $1 + \pi/4$ (c) $1 - \pi/4$ (d) none of these If area bounded by the curve $y(1 + 4x^2) = 1$, x-axis and ordinate $x = 0$ and $x = a$ is $\pi/8$ sq. units, then the value of a is	1 1 1 1
44. 45. 46. 47.	(a) $38/3$ (b) $76/3$ (c) $19/3$ (d) $57/3$ The area bounded by curve $y = \sin 2x$, x-axis and the lines $x = \pi/4$ and $x = 3\pi/4$ is: (a) 1 sq. units (b) 2 sq. units (c) 4 sq. units (d) 3 2sq. units Area under the curve $y = V(b^2 - x^2)$ included between the lines $x = 0$ and $x = b$ is: (a) $\pi b^2 / 2$ (b) $\pi b / 2$ (c) $\pi b / 4$ (d) $\pi b^2 / 4$ The area bounded by the curve $y = \tan^2 x$, x-axis and ordinates $x = 0$ and $x = \pi/4$ is (a) $\pi/4$ (b) $1 + \pi/4$ (c) $1 - \pi/4$ (d) none of these If area bounded by the curve $y(1 + 4x^2) = 1$, x-axis and ordinate $x = 0$ and $x = a$ is $\pi/8$ sq. units, then the value of a is (a) $1/2$ (b) 1 (c) $-1/2$ (d) none of these	1 1 1 1 1
44. 45. 46.	(a) $38/3$ (b) $76/3$ (c) $19/3$ (d) $57/3$ The area bounded by curve $y = \sin 2x$, x-axis and the lines $x = \pi/4$ and $x = 3\pi/4$ is: (a) 1 sq. units (b) 2 sq. units (c) 4 sq. units (d) 3 2sq. units Area under the curve $y = \sqrt{b^2 - x^2}$ included between the lines $x = 0$ and $x = b$ is: (a) $\pi b^2 / 2$ (b) $\pi b / 2$ (c) $\pi b / 4$ (d) $\pi b^2 / 4$ The area bounded by the curve $y = \tan^2 x$, x-axis and ordinates $x = 0$ and $x = \pi/4$ is (a) $\pi/4$ (b) $1 + \pi/4$ (c) $1 - \pi/4$ (d) none of these If area bounded by the curve $y(1 + 4x^2) = 1$, x-axis and ordinate $x = 0$ and $x = a$ is $\pi/8$ sq. units, then the value of a is (a) $1/2$ (b) 1 (c) $-1/2$ (d) none of these The area of the region bounded by the curve	1 1 1 1
44. 45. 46. 47.	(a) $38/3$ (b) $76/3$ (c) $19/3$ (d) $57/3$ The area bounded by curve $y = \sin 2x$, x-axis and the lines $x = \pi/4$ and $x = 3\pi/4$ is: (a) 1 sq. units (b) 2 sq. units (c) 4 sq. units (d) 3 2sq. units Area under the curve $y = V(b^2 - x^2)$ included between the lines $x = 0$ and $x = b$ is: (a) $\pi b^2 / 2$ (b) $\pi b / 2$ (c) $\pi b / 4$ (d) $\pi b^2 / 4$ The area bounded by the curve $y = \tan^2 x$, x-axis and ordinates $x = 0$ and $x = \pi/4$ is (a) $\pi/4$ (b) $1 + \pi/4$ (c) $1 - \pi/4$ (d) none of these If area bounded by the curve $y(1 + 4x^2) = 1$, x-axis and ordinate $x = 0$ and $x = a$ is $\pi/8$ sq. units, then the value of a is (a) $1/2$ (b) 1 (c) $-1/2$ (d) none of these The area of the region bounded by the curve x = 2y + 3, y-axis and the line $y = -1$ and $y = b$ is 6 sq. units, then the value of b is	1 1 1 1 1
44. 45. 46. 47.	(a) $38/3$ (b) $76/3$ (c) $19/3$ (d) $57/3$ The area bounded by curve $y = \sin 2x$, x-axis and the lines $x = \pi/4$ and $x = 3\pi/4$ is: (a) 1 sq. units (b) 2 sq. units (c) 4 sq. units (d) 3 2sq. units Area under the curve $y = \sqrt{b^2 - x^2}$ included between the lines $x = 0$ and $x = b$ is: (a) $\pi b^2 / 2$ (b) $\pi b / 2$ (c) $\pi b / 4$ (d) $\pi b^2 / 4$ The area bounded by the curve $y = \tan^2 x$, x-axis and ordinates $x = 0$ and $x = \pi/4$ is (a) $\pi/4$ (b) $1 + \pi/4$ (c) $1 - \pi/4$ (d) none of these If area bounded by the curve $y(1 + 4x^2) = 1$, x-axis and ordinate $x = 0$ and $x = a$ is $\pi/8$ sq. units, then the value of a is (a) $1/2$ (b) 1 (c) $-1/2$ (d) none of these The area of the region bounded by the curve	1 1 1 1 1
44. 45. 46. 47. 48.	(a) $38/3$ (b) $76/3$ (c) $19/3$ (d) $57/3$ The area bounded by curve $y = \sin 2x$, x-axis and the lines $x = \pi/4$ and $x = 3\pi/4$ is: (a) 1 sq. units (b) 2 sq. units (c) 4 sq. units (d) 3 2sq. units Area under the curve $y = \sqrt{b^2 - x^2}$ included between the lines $x = 0$ and $x = b$ is: (a) $\pi b^2/2$ (b) $\pi b/2$ (c) $\pi b/4$ (d) $\pi b^2/4$ The area bounded by the curve $y = \tan^2 x$, x-axis and ordinates $x = 0$ and $x = \pi/4$ is (a) $\pi/4$ (b) $1 + \pi/4$ (c) $1 - \pi/4$ (d) none of these If area bounded by the curve $y(1 + 4x^2) = 1$, x-axis and ordinate $x = 0$ and $x = a$ is $\pi/8$ sq. units, then the value of a is (a) $1/2$ (b) 1 (c) $-1/2$ (d) none of these The area of the region bounded by the curve x = 2y + 3, y-axis and the line $y = -1$ and $y = b$ is 6 sq. units, then the value of b is (a) $b = 0$ (b) $b = 1$ (c) $b = -1$ (d) none of these	1 1 1 1
44. 45. 46. 47.	(a) $38/3$ (b) $76/3$ (c) $19/3$ (d) $57/3$ The area bounded by curve $y = \sin 2x$, x-axis and the lines $x = \pi/4$ and $x = 3\pi/4$ is: (a) 1 sq. units (b) 2 sq. units (c) 4 sq. units (d) 3 2sq. units Area under the curve $y = V(b^2 - x^2)$ included between the lines $x = 0$ and $x = b$ is: (a) $\pi b^2 / 2$ (b) $\pi b / 2$ (c) $\pi b / 4$ (d) $\pi b^2 / 4$ The area bounded by the curve $y = \tan^2 x$, x-axis and ordinates $x = 0$ and $x = \pi/4$ is (a) $\pi/4$ (b) $1 + \pi/4$ (c) $1 - \pi/4$ (d) none of these If area bounded by the curve $y(1 + 4x^2) = 1$, x-axis and ordinate $x = 0$ and $x = a$ is $\pi/8$ sq. units, then the value of a is (a) $1/2$ (b) 1 (c) $-1/2$ (d) none of these The area of the region bounded by the curve x = 2y + 3, y-axis and the line $y = -1$ and $y = b$ is 6 sq. units, then the value of b is	1 1 1 1 1

	(a) $a = -2$ (b) $a=2$	
	(c) a=1 (d) none of these	
50.	If the curve $y = f(x)$ crosses x-axis into 3 times and areas A1,A2 and A3 are formed, then the area between the curve and the ordinates $x = a$ and $x = b$ is given by	1
	(a) $A1 - A2 + A3$ (c) $A1 + A2 - A3$ (b) $A1 - A2 - A3$ (d) $A1 + A2 + A3$	
51.	The area bounded by the curve $y = \sin x$, $x = 0$ and $x = \pi$ is (a) 2 sq. unit (b) 4 sq. unit (c) 3 sq. unit (d) 1 sq. unit	1
52.	Area bounded by the curve $y = f(x)$, x-axis and the lines x=a and x = b is: (a) $\int_{a}^{b} x dy$ (b) $\int_{a}^{b} y dx$ (c) $\int_{a}^{b} x^{2} dy$ (d) $\int_{a}^{b} y^{2} dx$	1
53.	The area bounded by the curve $y^2 = 4ax$ and its latus rectum is (a) $\frac{4}{3}a^2$ sq. units (b) $\frac{8}{3}a^2$ sq. units (c) $\frac{16}{2}a^2$ sq. units (d) None of these	1
54.	The area enclosed between y = x, x = 1, x = 3 and x-axis is (a) 2 sq. units (b) 9/2 sq. units (c) 4 sq. units (d) None of these	1
55.	The area between the curve $y = x^2$, x-axis and the lines $x = 0$ and $x = 2$ is (a) $\frac{2}{3}$ sq unit (b) $\frac{6}{3}$ sq unit (c) $\frac{8}{3}$ sq unit (d) $\frac{4}{3}$ sq unit	1
56.	The area of the region bounded by the curve $y^2 = x$ and the lines $x = 1$ and $x = 4$ is (in sq. units): (a) $\frac{15}{2}$ (b) $\frac{14}{3}$ (c) 7 (d) None of these	1
57.	The area enclosed between x-axis and the curve $y = \cos x$ when $0 \le x \le 2\pi$ is (a) 0 sq. unit (b) 2 sq. units (c) 3 sq. units (d) 4 sq. units	1
58.	Find the area of the region bounded by the curve $y = x^2$ and the line $y = 16$ is (a) $\frac{32}{3}$ (b) $\frac{256}{3}$ (c) $\frac{64}{3}$ (d) $\frac{128}{3}$	1
59.	The area bounded by the curve y = 4 sin x, x-axis from x = 0 to x = π is equal to: (a) 1 sq unit (b) 2 sq unit (c) 4 sq unit (d) 8 sq unit	1
60.	The area bounded by the parabola $y^2 = x$ and the straight line $2y = x$ is (a) $\frac{4}{3}$ sq. units (b) 1 sq. unit (c) $\frac{2}{3}$ sq. unit (d) $\frac{1}{3}$ sq. unit	1
61.	The area of the region bounded three roads and the equation of roads is given by the curve y = x + 1 and the line x=2 and x=3 is (a) $\frac{7}{2}$ sq units (b) $\frac{9}{2}$ sq units (c) $\frac{11}{2}$ sq units (d) $\frac{13}{2}$ sq units	1
	Using integration, find the area of cake which is cut in the shape of the quadrant of the circle	-

	of radius 2units and center (0,0).	
	(a) 2π	
	(b) 4π	
	(c) 3 <i>π</i>	
	(d) π	
63.	The area of the region bounded by parabola $y^2 = x$ and the straight line $2y = x$ is	1
	(a) $\frac{1}{3}$ sq unit	
	(b) 2 sq unit	
	(c) $\frac{4}{3}$ sq unit	
	(d) $\frac{2}{3}$ sq unit	
64	3	1
64.	A Cable hangs in the form of parabola with its axis vertical. The cable is 10m high and 5m wide at the base	1
	() 7 5	
	(a) $y^2 = \frac{5}{8}x$	
	(b) $y^2 = -\frac{5}{8}x$	
	(b) $y^2 = -\frac{5}{8}x$ (c) $x^2 = \frac{5}{8}y$	
	(d) $x^2 = -\frac{5}{8}y$	
	$(a) x = \frac{1}{8} y$	
65.	A parking lot in JNU CAMPAS has an area equals to the smaller part of the circle x^2 +	1
	$y^2 = a^2$ cut off by the line $x = \frac{a}{\sqrt{2}}$. This area is allotted for car owners who practices car	
	pooling. On the basis of above information, find the area used for car pooling.	
	(a) $\frac{a^2(\pi-2)}{2}$ sq units	
	(b) $\frac{a^2}{4} sq$ units	
	(c) $\frac{a^2(\pi-2)}{a^2(4-2)}$ sq units	
	(d) $\frac{a^2(\pi-2)}{5}$ sq units	
66.	The area bounded by the curve $y = x $, the x-axis and between $x = -2$ to $x = 0$ is	1
	(a) $4 sq$ units	
	(b) $\frac{3}{2}$ sq units	
	(c) 1 sq units	
67	(d) 2 sq units	1
67.	Ram and Aman both draw parabolas. Ram draw a parabola on positive y-axis whose equation is $y^2 = 4ax$ and Aman draw a parabola on positive x-axis whose equation is $x^2 = 4ay$ on	1
	the same xy-plane, then her teacher told them to find the area bounded by these two	
	parabolas.	
	V V	
	$x^2 = 4ay$	
	$y^2 = 4ax$	

	(a) $\frac{8a^2}{3}$ (b) $\frac{16a^2}{3}$ (c) $\frac{32a^2}{3}$ (d) $\frac{64a^2}{3}$	
68.	Mohit draw three lines and give the equation of lines as $3x - y - 3 = 0$, $2x + y - 12$ and $x - 2y - 1 = 0$ and told his brother to find the area bounded by these lines	1
	(a)8 sq.units (b) 9 sq.units (c) 10 sq.units (d) 11 sq.units	
69.	The area of region bounded by the line $2x + y = 8$, the Y-axis and the lines y=2 and y=4 is (a) 5 sq. units (b) 6 sq. units (c) 12 sq. units (d) 7 sq. units	1
70.	The area bonded by the parabola $y^2 = 16x$ and its latusrectum is (a) $\frac{25}{3}$ sq. units (b) $\frac{16}{3}$ sq. units (c) $\frac{64}{3}$ sq. units (d) $\frac{32}{3}$ sq. units	1

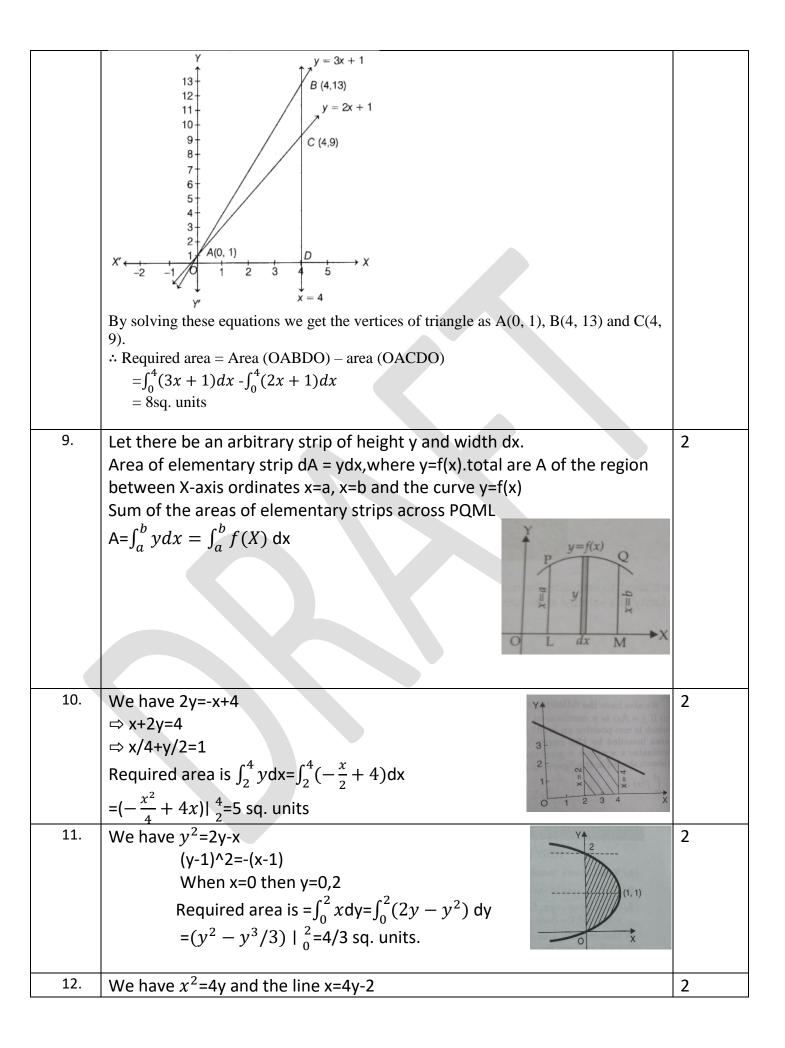
.

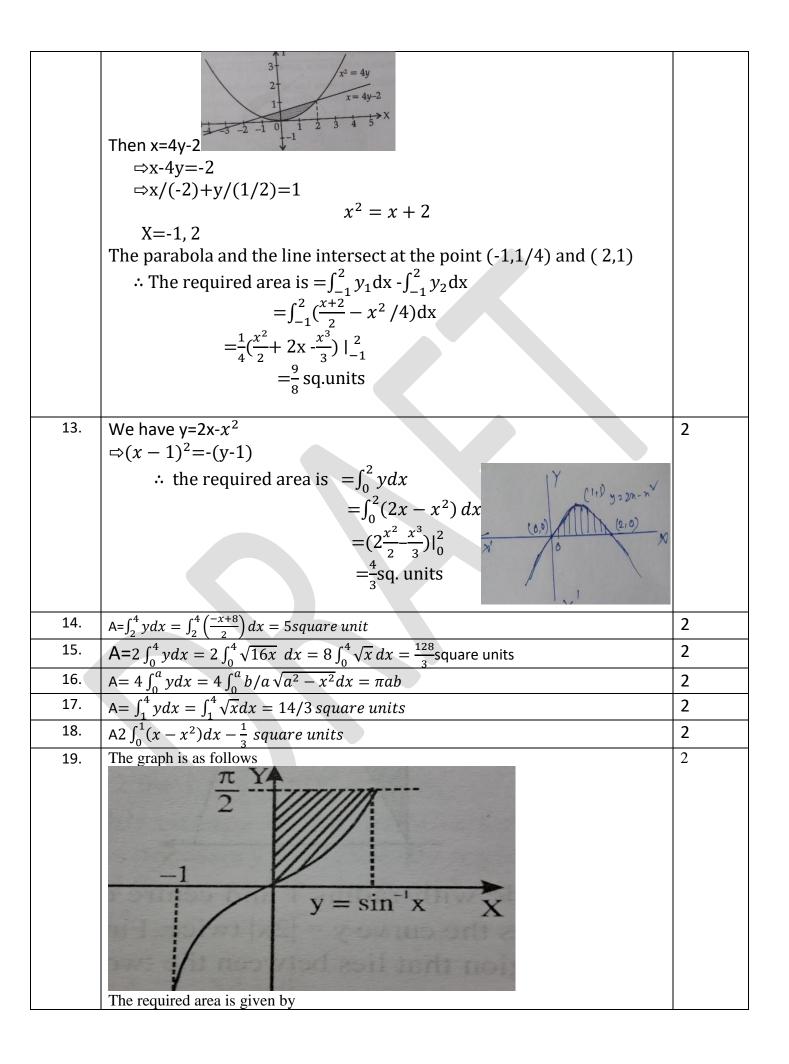
ANSWERS:

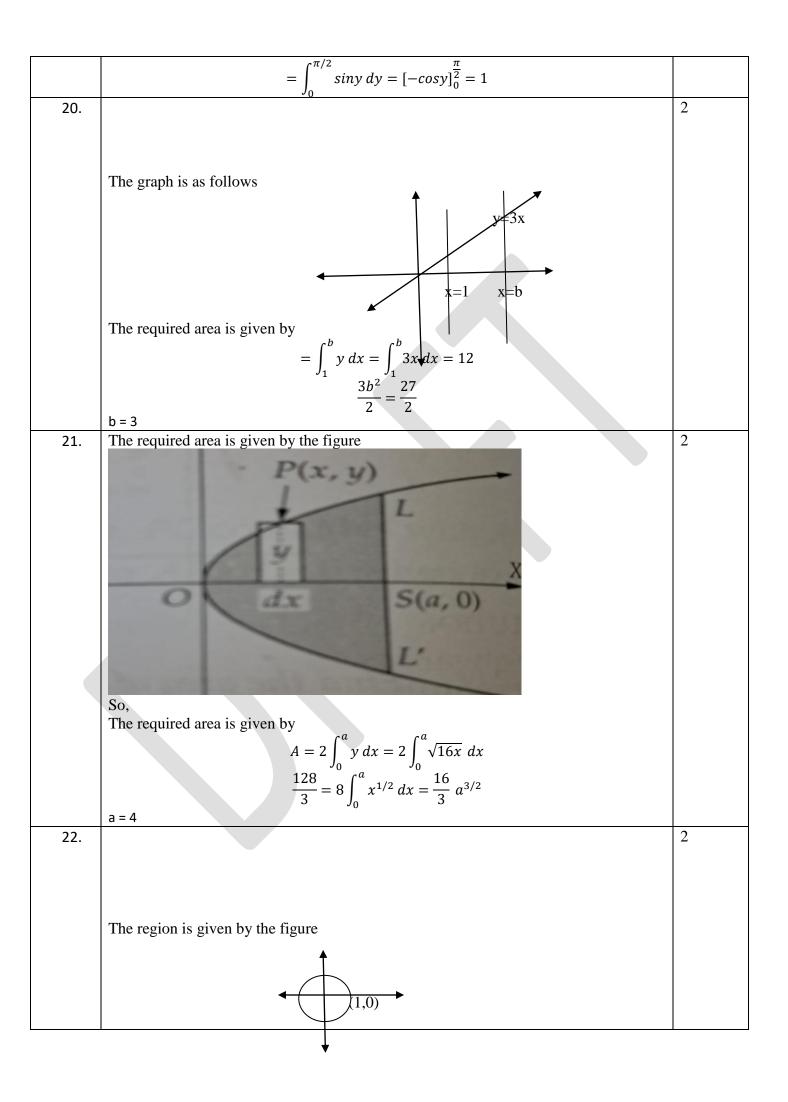
Q. NO	ANSWER	MARKS
1.	a) 2 sq unit	1
2.	e) 4/3 sq unit	1
3.	a) A $^2/6$ sq unit	1
4.	b) 6 sq unit	1
5.	c) $\frac{17\sqrt{17}}{6}$ sq unit	1
	6	
6.	d) 1 sq unit	1
7.	b) 9sq. unit	1
8.	c) 9sq. unit	1
9.	c) 12 sq. unit	1
10.	b) $\frac{3}{2}$ sq. unit	1
11.	b	1
12.	a	1
13.	b	1
14.	b	1
15.	b	1
16.	b	1
17.	b	1
18.	a	1
19.	b	1
20.	a	1
21.	C	1
22.	d	1
23.	b	1
24.	a	1
25.	b	1
26.	b	1
27.	a	1
28.	а	1
29.	a	1
30.	C	1
31.	a	1
32.	b	1
33.	b	1
34.	b	1
35.	b	1
36.	a	1

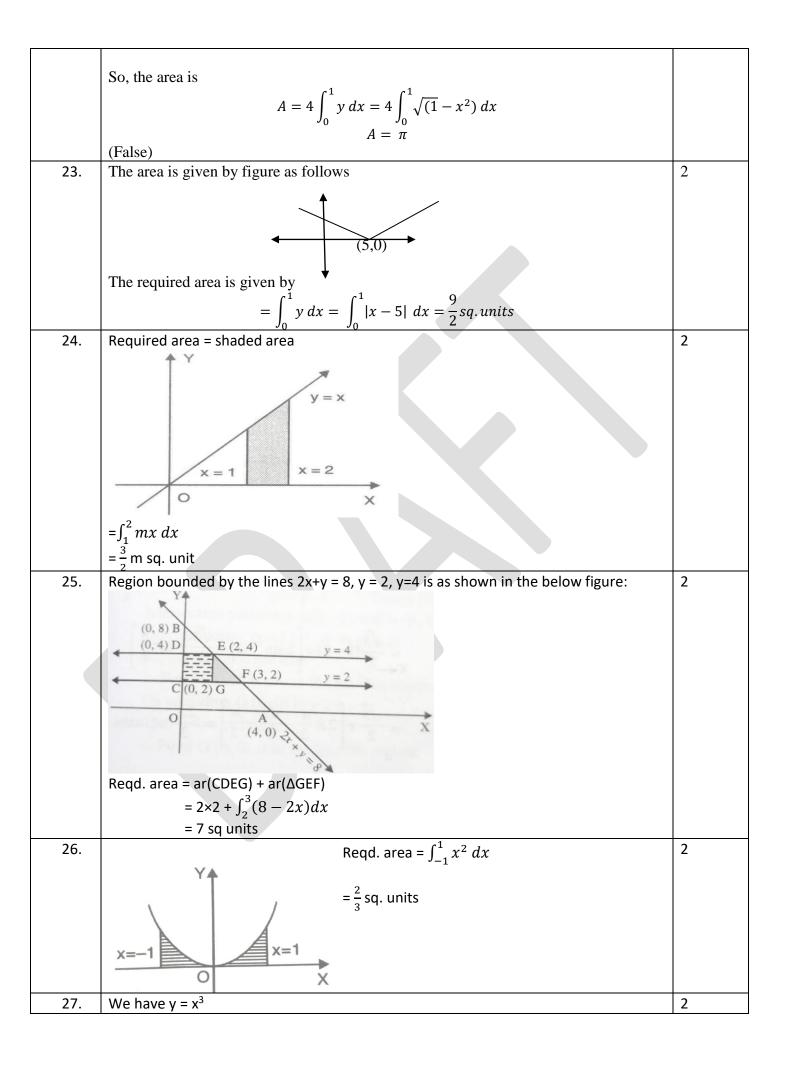
37.	а	1
38.	а	1
39.	b	1
40.		
	b	1
41.	Option – c	1
42.	Option – b	1
43.	Option – b	1
44.	Option – a	1
45.	Option – d	1
46.	Option – c	1
47.	Option – a	1
48.	Option – b	1
49.	Option – a	1
50.	Option – d	1
51.	a	1
52.	c	1
53.	b	1
54.	с	1
55.	С	1
56.	b	1
57.	d	1
58.	b	1
59.	d	1
60.	a	1
61.	(a) $\frac{7}{2}$ sq units	1
62.	(d) π	1
63.	$(c)\frac{4}{3}$ sq unit	1
64.	$(c)x^2 = \frac{5}{8}y$	1
65.	(c) $\frac{a^2(\pi-2)}{4}$ sq units	1
66.	(d) 2 sq units	1
67.	(d) 2 sq units (b) $\frac{16a^2}{3}$	1
68.	(d) 11 sq. units	1
69.	(a) 5 <i>sq.units</i>	1
70.	(a) 5 sq. units (c) $\frac{64}{3} \text{ sq. units}$	1
L		

CHAPTER-8 APPLICATION OF INTEGRALS 02 MARK TYPE QUESTIONS


Q. NO	QUESTION	MARK
1.	Find the area bounded by the curve $y = x x $, x-axis and $x = -1$ and $x = 1$.	2
2.	Find the area bounded by the lines $ x + y =1$.	2
3.	Find the area bounded by the curves $y = x^2$ and the line $y=4$.	2
4.	Find the area of the curve $y = sinx$ between 0 and π .	2
5.	Find the area of the region bounded by $y^2 = 9x$, $x = 2$, $x = 4$ and the $x - axis$ in the first quadrant.	2
6.	Find the area between the curves $y = x$ and $y = x^2$.	2
7.	Write the formula of $\int \sqrt{a^2 - x^2} dx$	2
8.	Using integration, find the area of the triangular region whose sides have the equations $y = 2x + 1$, y = 3x + 1 and $x = 4$.	2
9.	Write the Geometric significance of the integral $\int_a^b f(x) dx$.	2
10.	Using integration, Find the area of the region bounded by the line 2y= -x+8, X- axis and the lines X=2 andx=4.	2
11.	Find the area bounded by the curvey ² = 2y-xand Y axis.	2
12.	Find the area of the region bounded by the curve $x^2=4y$ and the straight line $x=4y-2$.	2
13.	Find the area of the region bounded by the curve X axis and $y = 2x-x^2$.	2
13.	Using integration find the area of the region bounded by the line $2y = -x+8$, x-axis and the line $x = 2$ and $x = 4$.	2
15.	Using integration find the area of the region bounded between the line x = 4 and the parabola $y^2 = 4x$.	2
16.	Find the area of the region bounded by the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$.	2
17.	Find the area of the region bounded by the curve $y^2 = x$ and the line x = 1, x = 4 and the x- axis.	2
18.	Find the area of the region bounded by the curve parabola $y = x^2$ and the line $y = x $.	2
19.	Find the area bounded between $y = \sin^{-1}x$ and y-axis between $y = 0$ and $y = \pi/2$.	2
20.	If the area bounded by the curve $y = 3x$, x-axis and between the ordinates $x = 1$ and $x = b$ is 12 squnits, then find the value of b.	2
21.	If the area bounded by the parabola $y^2 = 16x$ and the line x=a is 128/3 sq. units, then find the value of a.	2
22.	Using integration check whether given statement is true or false	2
	Statement: The region under the curve $y = \sqrt{(1 - x^2)}$ on the interval [-1,1] has area $A = \pi/2$,	
23.	Find the area of the region bounded by the $y = x - 5 $ and ordinates x=0 and x=1.	2
24.	Using integration, find the area of the region bounded by: y=mx (m > 0, x= 1, x= 2 and the x-axis).	2
25.	Sketch the region bounded by the lines $2x+y = 8$, $y = 2$, $y = 4$ and the y-axis. Hence, obtain its area, using integration.	2
26.	Find the area bounded by $y = x^2$, the x-axis and the lines $x = 1$ and $x = -1$.	2
27.	Find the area bounded by the curve $y = x^3$, $x = -2$ and $x = 1$.	2


28.	Find the area of the region bounded by the parabola $y^2 = 8x$ and the line $x = 2$.	2
29.	Reshma draw a beautiful painting in which she draw mountains, trees, birds, river, houses	2
	etc. His little brother come across the painting and cut one of the mountain by drawing a	
	straight line. Based on the above information find the area bounded by mountain and straight	
	line. The equation of mountain is $y = -x^2$ and equation of straight line is	
	x + y + 2 = 0	
	+	
30.	Find the area bounded by the curve $y^2 = 9x$ and $y = 3x$.	2
	The the ded bounded by the curve $y' = 3x$ and $y = 5x$.	-
31.	Location of the three houses of a society is represented by points $A(0,5)$, $B(3,2)$ and $C(1,1)$.	2
	Find the area bounded by these three houses and the equation of line represented by house	
	A, B, C are $y = 4x + 5$,	
	y = 5 - x, and $4y = x + 5$.	
	$Y_{y} = 4x + 5$	
	X + 5 -1 3 X	
	y = 5 - x	
	VectorSlock* VectorNode.com/10208806	
32.	A circular Pizza is cut into 8 equal pieces with the help of knife then find the area of region	2
	bounded by each pieces of pizza if the equation of pizza and knife is represented by x^2 +	
	$y^2 = 32$ and $y = x$ respectively.	
33.	Consider the following curve and find the area under the curve $y = 2\sqrt{x}$ included between	2
	the line x=0 and x=1 is	


ANSWERS:


r		1
Q. NO	ANSWER	MARKS
1.	We know $Y = x x $ $Y = \{x^2 if x > 0 - x^2 if x < 0$	2
	$x = -1$ $x = -1$ $y = -x^{2}$	
	Area ABO = $\int_{-1}^{0} y dx = \int_{-1}^{0} -x^2 dx = -(1/3)$ since area is always positive so area ABO is 1/3 Area DCO = $\int_{-1}^{0} y dx = \int_{-1}^{0} .x^2 dx = (1/3)$ So, required area is $1/3 + 1/3 = 2/3$.	
2.	Area ABO = $\int_{-1}^{0} y dx$ where the shaded part having the oblique line equation be x + y = 1 so, y = 1 - x Therefore Area ABO = $\int_{-1}^{0} (1 - x) dx$	2
	$= \frac{1}{2}$ So, required area is 4 * Area of AOB = 4*(1/2) = 2sq. unit	
3.	We have $y = x^2$ and $y = 4$ Let AB represent the line $y=4$	2
	$\begin{array}{c c} & y \\ \hline C & B \\ \hline \end{array} y=4 \\ \hline \hline 0 & x \end{array}$	

	Let AOB represent $y = x^2$ i.e $x = \pm \sqrt{y}$	
	Since BOCB is in the 1 st quadrant, we use only positive value of \sqrt{y}	
	Area of AOBA= $2* \int_0^4 \sqrt{y} dy = (32/3)$ sq. unit	
4.	$\begin{array}{c} Y \\ A \\ \hline \\ B \\ \hline \\ \end{array} X$	2
	$y = sinx$ O $\pi/2$ π	
	Area of OAB= $\int_{0}^{\pi} y dx = \int_{0}^{\pi} sindx = 2$ sq. units	
5.	$y^2 = 9x$, $x = 2$, $x = 4$ and the $x - axis$ in the first quadrant	2
	$X' \xrightarrow{Y} y^2 = 9_X$ $X' \xrightarrow{A} B \xrightarrow{X = 4}$ Y'	
	Required area= $\int_{2}^{4} y dx$	
	$=\int_{2}^{4}\sqrt{9x}dx$	
	$=\int_{2}^{4} 3\sqrt{x} dx$	
	$-J_2 = J_2 = J_2$	
6.	$\frac{1}{2} = 16 - 4\sqrt{2} \text{ sq. units}$ $y = x$	2
0.	$y = x^{2}$ On solving x = 0, 1 $Area = \int_{0}^{1} (x - x^{2}) dx$ $= \frac{1}{6} sq unit.$ $y = x$ (1, 1) x = 0 (1, 1) x = 0	
7.	$\frac{x}{2}\sqrt{a^2 - x^2} + \frac{a^2}{2}\sin^{-1}\frac{x}{a} + c$	2
8.	Given eq. of the lines are	2
	y = 2x + 1(1)	
	y = 3x + 1(2)	
	x = 4(3)	

	$\therefore \text{ Reqd. area} = \left \int_{-2}^{0} x^3 dx \right + \int_{0}^{1} x^3 dx$	
	x = -2	
	$= \left \left[\frac{x^4}{4} \right]_{-2}^0 \right + \left[\frac{x^4}{4} \right]_{0}^1$	
	$= \left \left(0 - \frac{16}{4} \right) \right + \left(\frac{1}{4} - 0 \right) = \frac{16}{4} + \frac{1}{4} = \frac{17}{4}.$	
28.	Reqd. area = $2 \int_0^2 \sqrt{8x} dx$ = $\frac{8}{3} \sqrt{2} [2^{\frac{3}{2}} - 0]$ = $32/3$ sq. units	2
29.	Required area = $\left(\int_{-1}^{2} (y_1 - y_2) dx\right)$	2
	$=\int_{-1}^{2} -x^{2} - x - 2 dx$ = $\int_{-1}^{2} -x^{2} + x + 2 dx$ = $\left[-\frac{x^{3}}{3} + \frac{x^{2}}{2} + 2x\right]_{-1}^{2}$ = $\left(-\frac{8}{3} + 6\right) - \left(\frac{1}{3} + \frac{1}{2} - 2\right)$ = $\frac{9}{2}$ sq. units	
30.	We have $y^2 = 9x$ and $y = 3x$ $\Rightarrow (3x)^2 = 9x$ $\Rightarrow 9x^2 = 9x$ $\Rightarrow 9x(x-1) = 0$ $\Rightarrow x = 0,1$ \therefore Required bounded area $= \int_0^1 \sqrt{9x} dx - \int_0^1 3x dx$ $= 3\left[\frac{x^2}{\frac{3}{2}}\right]_0^1 - 3\left[\frac{x^2}{2}\right]_0^1$ $= 3\left(\frac{2}{3}-0\right) - 3\left(\frac{1}{2}-0\right)$ $= 2 - \frac{3}{2}$ $= \frac{1}{2}$ sq units	2
31.	∴ Required bounded area between three houses	2
	$= \int_{-1}^{0} (4x+5)dx - \int_{0}^{3} (5-x)dx - \frac{1}{4} \int_{-1}^{3} (x+5)dx$ = $\left[\frac{4x^{2}}{2} + 5\right]_{-1}^{0} + \left[5x - \frac{x^{2}}{2}\right]_{0}^{3} - \frac{1}{4} [x^{2} + 5x]_{-1}^{3}$ = $\left[0 - 2 + 5\right] + \left[15 - \frac{9}{2} - 0\right] - \frac{1}{4} \left[\frac{9}{2} + 15 - \frac{1}{2} + 5\right]$	
	y = 5 - x	

	2 . 21 1 24	
	$=3+\frac{21}{2}-\frac{1}{4}.24$	
	$=-3+\frac{21}{2}=\frac{15}{2}$ sq units	
32.	\therefore Required area of each slice of pizza	2
	$=\int_{0}^{4} x dx + \int_{4}^{4\sqrt{2}} \sqrt{\left(4\sqrt{2}\right)^{2} - x^{2}} dx$	
	$= \left \frac{x^2}{2}\right _0^4 + \left \frac{x}{2}\sqrt{\left(4\sqrt{2}\right)^2 - x^2} + \frac{4\sqrt{2}}{2}\sin^{-1}\frac{x}{4\sqrt{2}}\right _4^{4\sqrt{2}}$	
	$\begin{bmatrix} -1 & 2 & 0 & 1 \\ 2 & 0 & 1 & 2 \end{bmatrix} \begin{bmatrix} 2 & \sqrt{1 & 2} & 2 & 3 \\ 1 & 2 & 2 & 4 \\ \sqrt{2} \end{bmatrix}_{4}$	
	$=\frac{16}{2} + \left \frac{4\sqrt{2}}{2} \cdot 0 + 16\sin^{-1}\frac{4\sqrt{2}}{4\sqrt{2}} - \frac{4}{2}\sqrt{\left(4\sqrt{2}\right)^2 - 16 - 16\sin^{-1}\frac{4}{4\sqrt{2}}}\right $	
	$=8 + \left[16.\frac{\pi}{2} - 2.\sqrt{16} - 16.\frac{\pi}{4}\right]$	
	$=8 + [8\pi - 8 - 4\pi]$	
	$=4\pi \ sq \ units$	
33.	We have, $y = 2\sqrt{x}$, $x = 0$ and $x = 1$	2
	Y A	
	$y=2\sqrt{x}$	
	, 2 M	
	(0,0) $(1,0)$ X	
	(0, 0) O (1, 0) X	
	(0, 0) O (1, 0) X	
	$(0, 0) \xrightarrow{O} (1, 0) \xrightarrow{(1, 0)} X$	
	(0, 0)	
	$(0, 0) O \qquad $	
	$(0, 0) O \qquad $	
	(0, 0)	
	$(0, 0) O \qquad $	
	$(0, 0) O \qquad $	

CHAPTER-8 APPLICATION OF INTEGRALS 03 MARK TYPE QUESTIONS

_	U3 MARK TYPE QUESTIONS	
Q. NO	QUESTION	MARK
1.	Find the area of Δ ABC, the coordinates of whose vertices are A (2, 5), B(4, 7) and C(6, 2) by using integration.	3
2.	If $y=2 \sin x + \sin 2x$ for $0 \le x \le 2\pi$ find the area enclosed by the curve and the x-axis.	3
3.	Find the area of the region bounded by the ellipse $\frac{y_2}{16} + \frac{x_2}{25} = 1$.	
4.	Find the area of the region bounded by the curve $y = \sqrt{16 - x^2}$ and $x - axis$.	3
5.	Find the area of the region bounded by the curve $y = x^2$ and $y = 16$.	
6.	Find the area under the curve $y = x^2$ and the lines $x = -1, x = 2$ and $x - axis$	3
7.	Find the area bounded by the curve $y = \cos x$, x-axis and the ordinates $x = -5\pi/6$ and $x = \pi$	3
8.	Find the area of larger portion of the circle $x^2 + y^2 = 4$ cut off by the line x=1	3
9.	If the area of the region enclosed by the parabola $y^2 = 4ax$ and the line $y = mx$ is 3/8, then find a relation between a and m.	3
10.	In a classroom, the teacher explains the properties of a particular curve by saying that this particular curve has beautiful ups and downs. It starts at 1 and heads down until π radian, and then heads up again as shown in the figure $\frac{-\pi}{-\pi} - \frac{\pi}{2} - \frac{\pi}{2}$	3
	If both the mentioned angles and shaded regions are equal then find the graph of the curve and area of the shaded region.	
12.	Find the area enclosed by the circle $x^2 + y^2 = 2$.	3
13.	Rishika made two chapattis and place one upon the other as shown in the figure. One of the chapatti representes the equation $(x - 2)^2 + y^2 = 4$, while other chapatti represents the equation $x^2 + y^2 = 4$	3

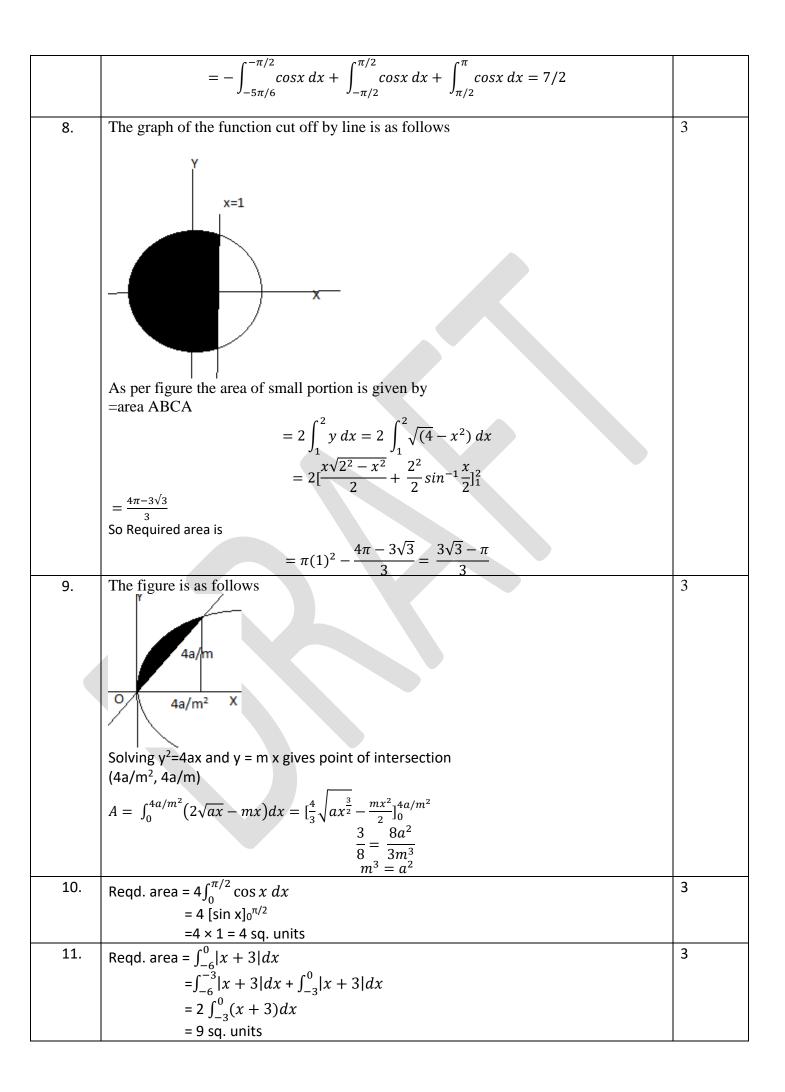
	Based on the above information, answer the following questions. (i) Find the centre and of the circle of equation $(x - 2)^2 + y^2 = 4$, (a) C=(2,0), r =2 (b) C=(0,0),r =2 (b) C=(2,0), r=1 (d) C= (0.2), r=2 (ii) Both the chapattis meet each other at (a) $(1,\sqrt{3}), (1, -\sqrt{3})$ (b) $(1,\sqrt{3}), (1, -3)$ (c) $(1,3), (1, -3)$ (d) $(1,\sqrt{2}), (1, -\sqrt{2})$	
	(iii) Area bounded by two chapattis is (a) $\frac{8\pi}{3} - \sqrt{3}$ sq. units (b) $\frac{8\pi}{5} - 2\sqrt{3}$ sq. units (c) $\frac{8\pi}{3} - 2$ sq. units (d) $\frac{8\pi}{2} - 2\sqrt{3}$ sq. units	
14.	In a classroom teacher explain the properties of a particular curve by saying that this particular curve has beautiful up and downs. It starts at 1 and heads down until π radia and then heads up again and closely related to sine function and both follow each, other exactly $\frac{\pi}{2}$ radian apart as shown in figure.	
	Based on the above information ,answer the following questions. (i) Name the curve, about which teacher explained in the classroom. (a) cosine (b) sine (c) tangent (d) cotangent (ii)Area of curve explained in the passage from $0 \tan \frac{\pi}{2}$ is (a) $\frac{1}{3}$ sq units (b) $\frac{1}{2}$ sq units	
	(c) 1 sq units (d) 2 sq units (iii) Area of curve discussed in classroom from $\frac{\pi}{2}$ to $\frac{3\pi}{2}$ is (a) $\frac{7}{2}$ sq units (b) $\frac{9}{2}$ sq units (c) $\frac{11}{2}$ sq units (d) $\frac{13}{2}$ sq units	
15.	In geometry we have learn formulae to calculate areas of various geometrical figures including triangles, rectangles, trapezium and circle. Such formula is fundamental in the	3 us to

enclosed	by curves. For that w		
(i)	The area enclosed l	by the ellipse $\frac{x^2}{a^2}$ +	$-\frac{y^2}{h^2} = 1$ is
	(a) $\pi b \ sq.units$	u	
	(b) πa sq. units		
	(c) π sq.units		
	(d) $\pi ab \ sq. units$		
(ii) The	area enclosed by the c	ircle $x^2 + y^2 = a$	z^2 is
(a) πa^2	(b) <i>π</i>	(c) a^2	(d) <i>a</i>
(a)nu			
	area of the region bou	inded by the curve	$y = x^2$ and the line $y = 4$

Q. NO ANSWER MARKS 1. Vertices of the given triangle are A(2,5) B(4,7) and C(6,2) Equation of AB y-5 = $\frac{7-5}{4-2}$ (x-2) \Rightarrow y - 5 = x-2 \Rightarrow y = x+3 8 B (4,7) 6 (2,5) 4 C(6,2) 2 0 2 4 6 The equation of side BC, $(y-7) = \frac{2-7}{6-4}(x-4)$ $(y-7) = \frac{-5}{2}(x-4)$ 2y - 14 = -5x + 202y = -5x + 34 $y = \frac{1}{2}(-5x + 34) \qquad -(2)$ The equation of side AC, $(y-5) = \frac{2-5}{6-2}(x-2)$ $(y-5) = \frac{-3}{4}(x-2)$ 4y - 20 = -3x + 64y = -3x + 26

ANSWERS:

$$y = \frac{1}{4}(-3x + 26) - (3)$$


$$\therefore \text{ Area of } \Delta ABC$$

$$= \int_{2}^{4} y_{AB} dx + \int_{4}^{6} y_{BC} dx - \int_{2}^{6} y_{AC} dx$$

$$= \int_{2}^{4} (x+3) dx + \int_{4}^{6} \frac{-1}{2}(5x-34) dx - \int_{2}^{6} \frac{-1}{4}(3x-26) dx$$

$$= 12 + \frac{1}{2}(18) - \frac{1}{4}(56) - 12 + 9 - 14 = 7 \text{ sq units}$$

2. To find the area enclosed by the curve and the x-axis, we need to integrate the absolute value of the function y with respect to x, between the limits 0 and 2x.
The function y = 2 sin x + sin 2x is always non-negative for 0 s x \le 2\pi, so we can simply integrate it as is.
A=2 (2sin x + sin 2x)dx=2j(2sin x + sin 2x) dx = 4 \int_{0}^{\pi} sin x dx+2 \int_{\pi}^{2\pi} sin 2x dx=8+0=8
3.
Given the equation of the ellipse is $\frac{y^{2}}{16} + \frac{x^{2}}{25} - 1$
 $\Rightarrow \frac{y^{2}}{16} - 1 - \frac{x^{2}}{25}$
 $\Rightarrow Y = \frac{4}{5}\sqrt{25 + x^{2}}$
Since ellipse is symmetrical about the axes,
So, required area = 4* \int_{0}^{5} (4/5)\sqrt{25 - x^{2}} dx = 20 \pi \text{ sq. units}

4.	$y = \sqrt{16 - x^2}$	3
	At x-axis y will be 0	
	$0 = \sqrt{16 - x^2}$	
	$\begin{array}{c} x = \pm 4 \end{array}$	
	A real of the surve $-\int_{-4}^{4} u du$ (-4, 0) O (4, 0)	
	Area of the curve $-J_{-4}yax$	
	$=\int_{-4}^{4}\sqrt{16-x^2}dx$	
	$=8\pi$ sq. unit	
5.	Given equation of the curve are	3
5.	$y = x^2 - \dots - (1)$	5
	$y = x^{-1}$ $y = 16^{-1}$	
	From (1) and (2)	
	$x = \pm 4$	
	$\begin{array}{c} (4,16) \\ A^{(0,16)} \\ B^{(0,16)} \\ y = 16 \\ y = 16$	
	y=16	
	$x^2 = y$	
	Required area= $\int_{-4}^{4} y dx$	
	$=\int_{-4}^{4} (16 - x^2) dx$	
	$=2\int_0^4 (16-x^2)dx = \frac{256}{3}$ sq. units	
6.	Given equation of the curve are $\sqrt{2}$	3
	$y = x^2 - \dots - (1)$	
	x = -1(2)	
	x = 2(3)	
	$\mathbf{P}_{\text{advised or pos}} \begin{bmatrix} 2 \\ y dy \end{bmatrix} = \mathbf{x} - \mathbf{x} \cdot \mathbf{x}$	
	Required area= $\int_{-1}^{2} y dx$ x=-1 x=2	
	$=\int_{-1}^{2} x^2 dx$	
	=3 sq. units	
7.	The graph of the function is as follows	3
	The second s	
	$-5-100$ π χ	
	6 2 2	
	A-QXIS28. Variat Photon 1 to	
	Solving equation $\cos x = 0$ between $[-5\pi/6, \pi]$ we get that	
	the graph of function intersect x-axis at two points $x = -\pi/2$ and $x = \pi/2$	
	so, the required area is given by	
	\int_{1}^{π}	
	$=\int_{-5\pi/6}^{\pi} \cos x dx$	

12.	Reqd. area = $4 \int_{0}^{\sqrt{2}} \sqrt{2 - x^2} dx$	3
	$= 2\pi$ sq. units	
13.	(i) (a) Given eq. of circle is $(x - 2)^2 + y^2 = 4$,	3
	$\Rightarrow (x-2)^2 + (y-0)^2 = 2^2$,	
	Eq. of circle $(x - h)^2 + (y - k)^2 = r^2$, where centre (h, k) and radius = r	
	So, by comparing above eq. we get centre $(2,0)$ and radius = 2	
	So, by comparing above eq. we get centre $(2,0)$ and radius $= 2$	
	(ii) $(a)(x-2)^2 + y^2 = 4 \dots \dots \dots (1)$	
	(ii) $(a)(x-2) + y - 4 \dots \dots (1)$ $x^2 + y^2 = 4 \Rightarrow y^2 = 4 - x^2 \dots \dots (2)$	
	From eq.(1) and (2) we get $(x-2)^2 + 4 - x^2 = 4$	
	$(x-2)^{2} + 4 - x^{2} = 4$ $x^{2} - 4x + 4 + 4 - x^{2} = 4$	
	$-4x + 4 = 0 \Rightarrow x = 1$	
	On putting x=1 in $x^2 + y^2 = 4 \Rightarrow 1^2 + y^2 = 4 \Rightarrow y^2 = 3 \Rightarrow y = \pm \sqrt{3}$	
	Therefore point of intersections are $(1,\sqrt{3}), (1,-\sqrt{3})$	
	(iii) (d) Required area = $2\left(\int_0^1 y_1 dx + \int_1^2 y_2 dx\right)$	
	$= 2\left(\int_{0}^{1}\sqrt{4-x^{2}}dx + \int_{0}^{1}\sqrt{4-(x-2)^{2}}dx\right)$	
	$= 2 \left(\int_{0}^{1} \sqrt{4 - x^{2} dx} + \int_{0}^{1} \sqrt{4 - (x - 2)^{2} dx} \right)$	
	$r = \frac{r^2}{r^2}$	
	$= \left[x\sqrt{4 - (x)^2} + 4\sin^{-1}\frac{x}{2} \right]_1^2 + \left[(x - 2)\sqrt{4 - (x - 2)^2} + 4\sin^{-1}\frac{x - 2}{2} \right]_0^1$	
	1 0	
	$= 4 \sin^{-1} 1 - \left(\sqrt{3} + 4 \times \frac{\pi}{6}\right) + \left\{-\sqrt{3} + 4 \sin^{-1} \left(-\frac{1}{2}\right)\right\} - \left\{0 + \frac{\pi}{6}\right\}$	
	$4\sin^{-1}(-1)$	
	$=4 \times \frac{\pi}{2} - \left(\sqrt{3} + \frac{2\pi}{3}\right) + \left(-\sqrt{3} - \frac{4\pi}{6}\right) - \left(-\frac{4\pi}{3}\right)$	
	$=\frac{8\pi}{3}-2\sqrt{3} \ sq.units$	
14.	(i) (a) Here the teacher explained about cosine curve.	3
	(ii) (c) : Required area = $\int_{0}^{\frac{\pi}{2}} cosxdx$	
	(ii) (c) \therefore Required area = $\int_0^2 cosx dx$	
	$=[sinx]_{0}^{\frac{1}{2}}$	
	0	
	$=\sin\frac{\pi}{2}-\sin 0$	
	= 1 - 0 = 1 sq units	
	(iii) (b) : Required area = $\int_{\frac{\pi}{2}}^{\frac{3\pi}{2}} cosxdx$	
	$\left[1 + \frac{3\pi}{2}\right]$	
	$=\left [sinx]_{\frac{\pi}{2}}^{\frac{3\pi}{2}}\right $	
	$=\left \sin\frac{3\pi}{2}-\sin\frac{\pi}{2}\right $	
	$= -2 = 2 \ sq \ units$	
15.	(i) (d) The given equation of ellipse is $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \dots \dots$	3
	Area of ellipse = 4(area of region 1^{st} quadrant)	
	$=4\int_{0}^{a} y dx$	
	$=\int_0^a rac{b}{a} \sqrt{a^2-x^2} dx$	
	$[\because (1) \Rightarrow y = \pm \frac{b}{a}\sqrt{a^2 - x^2}]$	
	$ \cdot _{y} - \pm_{a} \sqrt{a} x $	

(But region OABO lies in 1st quadrant, y is positive)

$$=4 \int_{0}^{a} \frac{b}{a} \sqrt{a^{2} - x^{2}} dx$$

$$= \frac{ab}{a} \left[\left[\frac{a}{2} (0) + \frac{a^{2}}{2} \sin^{-1} \frac{x}{a} \right]_{0}^{a}$$

$$= \frac{ab}{a} \left[\left[\frac{a}{2} (0) + \frac{a^{2}}{2} \sin^{-1} (1) \right] - \{0 - 0\} \right]$$

$$= \frac{ab}{a} \left[\frac{a^{2}}{2} \cdot \frac{x}{2} \right]$$

$$= \pi ab \ sq \ units$$
(ii) (a) The given equation of ellipse is $x^{2} + y^{2} = a^{2} \dots \dots \dots \dots \dots (1)$
This is a circle whose centre is $(0,0)$ and radius 'a'
Area of circle = 4(area of region 1st quadrant)
$$= 4 \int_{0}^{a} y \ dx$$

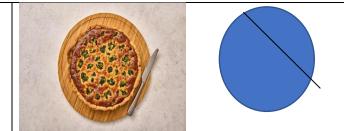
$$= \int_{0}^{a} \sqrt{a^{2} - x^{2}} dx$$
[: $(1) \Rightarrow y = \pm \sqrt{a^{2} - x^{2}}$]
(But region OABO lies in 1st quadrant, y is positive)

$$= 4 \int_{0}^{a} \sqrt{a^{2} - x^{2}} dx$$

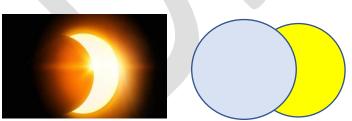
$$= 4 \left[\frac{x}{2} \sqrt{a^{2} - x^{2}} dx + \frac{x}{2} \sin^{-1} (1) \right] - \left\{ 0 - 0 \right\} \right]$$

$$= \pi a^{2} s q units$$
(iii) (b) The given curve is $y = x^{2} \dots (1)$
And the given line is $y = 4 \dots (2)$

$$= 2 \left[\frac{y^{2}}{a} \right]_{0}^{4}$$

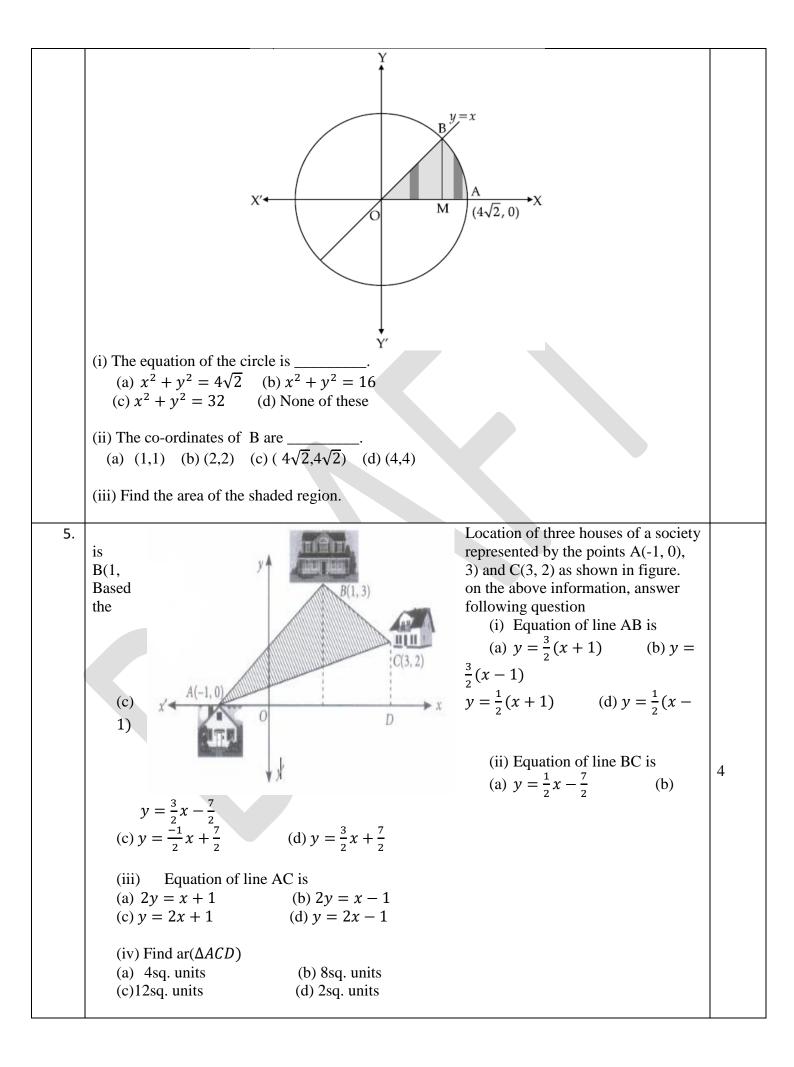

$$= 2 \left[\frac{y^{2}}{a} \right]_{0}^{4}$$

$$= 2 \left[\frac{y^{2}}{a} \right]_{0}^{4}$$

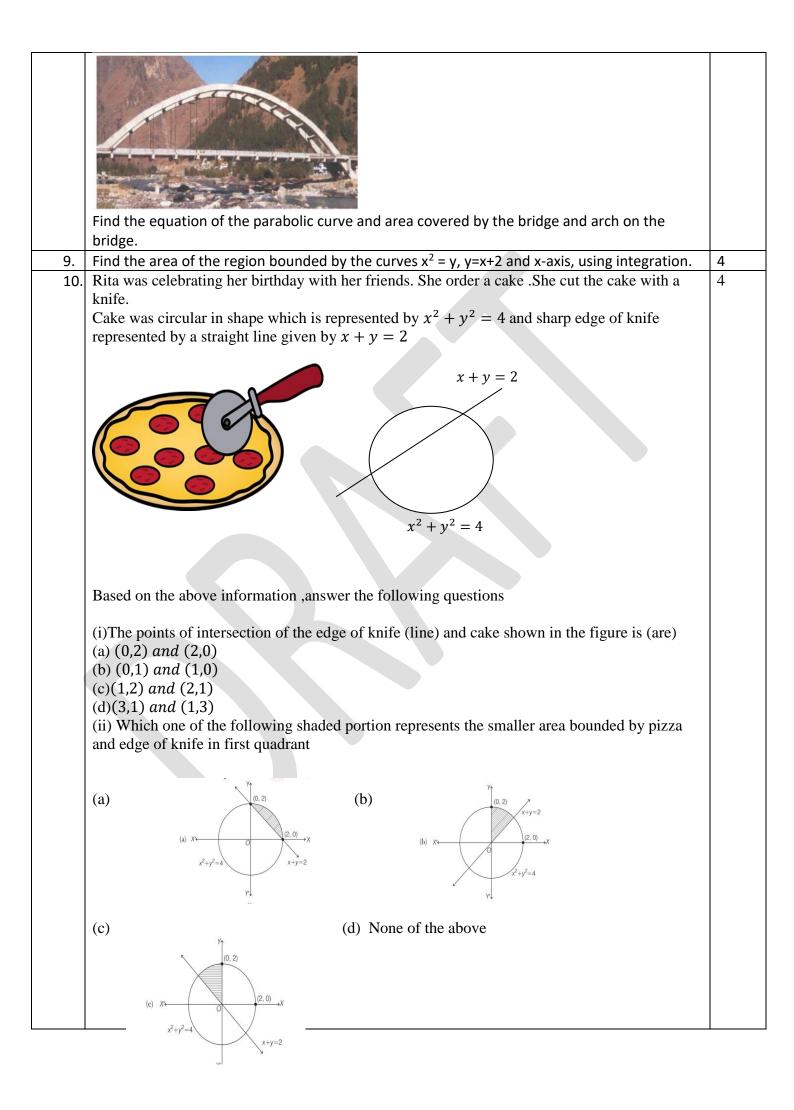

$$= \frac{x}{a} \left[\frac{z^{2}}{a^{2}} - 0 \right] = \frac{x}{a} (8) = \frac{32}{a} sq \ units$$

CHAPTER-8 APPLICATION OF INTEGRALS 04 MARK TYPE QUESTIONS

	U4 MARK TYPE QUESTIONS	
Q. NO	QUESTION	MARK
	A mirror in the shape of an ellipse $\frac{x^2}{9} + \frac{y^2}{4} = 1$ was hanging on the wall. Arun and his sister were playing with ball inside the house, even their mother refused to do so. All of a sudden, ball hit the mirror and got scratch in the shape of line represented by $\frac{x}{3} + \frac{y}{2} = 1$. Based on the above information, answer the following question. a) Points of intersection of ellipse and the scratch are i) (0,2), (3,0) ii) (2,0), (0,3) iii) (2,3), (0,0) iv) (0,3), (3,0) b) The area of the smaller region bounded by the mirror and scratch is i) $3(\frac{\pi}{2}+1)$ sq. unit ii) $(\frac{\pi}{2}-1)$ sq. unit iii) $(\frac{\pi}{2}-1)$ sq. unit	4
	iv) $3(\frac{\pi}{2} - 1)$ sq. unit c) The value of the integration $\int_{-1}^{0} (x + 1) dx$ is i) $\frac{1}{2}$ ii) $\frac{2}{3}$ iii) $\frac{3}{4}$ iv) $\frac{1}{3}$ d) If the mirror is replaced by a circular mirror $x^2 + y^2 = 1$ the new area of the mirror is i) 2π ii) π iii) $\pi/4$ iv) $1/\pi$	
2.	Pratik cut pizza with a knife .the shape of pizza is represented by the equation $x^2 + y^2 = 4$ and the sharpe edge of the knife represented by the straightline $x=\sqrt{3} y$.	4



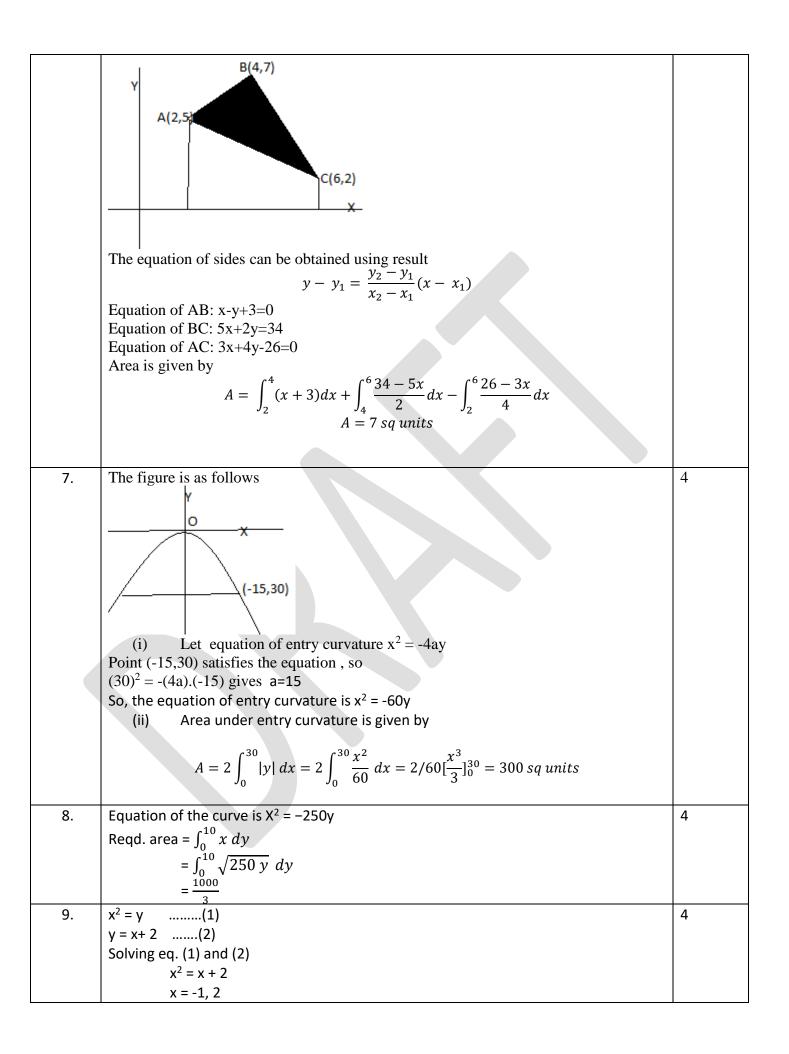
- a) The point of intersection of the edge of knife (line) and the pizza shown in the figure are
- i) $(1,\sqrt{3}), (-1,-\sqrt{3})$
- ii) $(\sqrt{3},1), (-\sqrt{3},-1)$
- iii) $(\sqrt{2},0),(0,\sqrt{3})$
- iv) $(-\sqrt{3},1), (1,-\sqrt{3})$
- b) Value of the area of the region bounded by circular pizza and edge of knife in 1st quadrant is
 - i) $\pi/2$ sq. unit
 - ii) $\pi/3$ sq. unit
 - iii) $\pi/5$ sq. unit
 - iv) π sq. Unit
- c) Area of each slice of pizza when cut in to 4 pieces is
 - i) π . sq. Unit
 - ii) $\pi/2$ sq. unit
 - iii) 3π sq. unit
 - iv) 2π sq. unit
- d) Area of whole pizza is
 - i) 3π sq. unit
 - ii) 2π sq. unit
 - iii) 5π sq. unit
- iv) 4π sq. unit
- 3. In a partial solar eclipse when the moon and sun look overlapped as shown in the figure. The equation of the image of moon represented by the equation $(x-1)^2 + y^2 = 1$ and the image of sun is represented by the equation $x^2 + y^2 = 1$

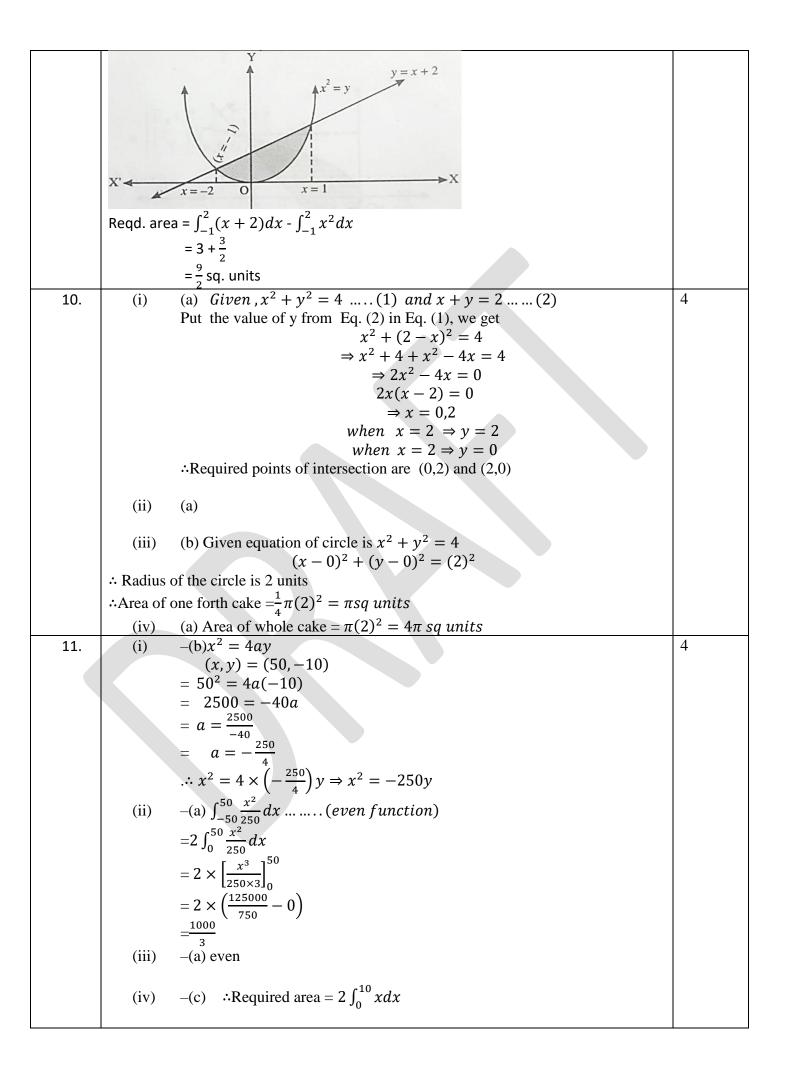

- a) The moon and sun meet each other at
 - i) 1
 - ii) ½
 - iii) 1/3
 - iv) ¼
- b)

(a) $x' \xrightarrow{y' = 1}_{y' = 1}^{y' = 1}_{y' = 1}$ (b) $x' \xrightarrow{y' = 1}_{y' = 1}^{y' = 1}_{y' = 1}$ (c) $x' \xrightarrow{y' = 1}_{y' = 1}^{y' = 1}_{y' = 1}^{y' = 1}_{y' = 1}$	
(b) $x' \qquad \qquad$	
c) Value of $\int_{1/2}^{1} \sqrt{(1-x^2)} dx$ is i) $\frac{\pi}{2} + \frac{\sqrt{3}}{4}$ ii) $\frac{\pi}{6} + \frac{\sqrt{3}}{8}$ iii) $\frac{\pi}{6} - \frac{\sqrt{3}}{8}$ iv) $\frac{\pi}{2} - \frac{\sqrt{3}}{4}$ d) Area of hidden portion of the lower circle is i) $(\frac{2\pi}{3} + \frac{\sqrt{3}}{2})$ sq. unit ii) $(\frac{\pi}{3} + \frac{\sqrt{3}}{8})$ sq. unit iii) $(\frac{\pi}{3} - \frac{\sqrt{3}}{8})$ sq. unit iv) $(\frac{2\pi}{3} - \frac{\sqrt{3}}{2})$ sq. unit	
4. Read the following text and answer the following questions on the basis of the same: In the figure O (0, 0) is the centre of the circle. The line y = x meets the circle in the figurdrant at the point B.	

4 6. 50 Rajendra, a farmer had two sons and two daughters. He decided to divide his property among his sons and daughters .So he wrote a "WILL" about distribution of his property. According to his "WILL", he desired to give 3/5 th of the property to his sons in equal proportion, 1/3 rd to his daughters in equal proportion and rest to a charitable trust. After his death his "WILL" was opened and read out by the Advocate in the presence of all villagers. He stated in his WILL that my agriculture field is in the shape of triangle with vertices A(2,5), B(4,7) and C(6,2) and all will find the solution following questions based on the field. Those who will find the solution, will be given the stated share of my property Find the equations of each side of triangular field. (i) Find the area of field using integration. (ii) 4 7. Construction of airport is multi disciplinary project and in it involves the pooling of various engineering disciplines, agencies, experts, contractors, executives and the end users. Before entering into the real case studies of construction of runways and application of supply chain management technique it is essential to frame a construction plan and a map. The map shows parabolic entry curvatures in which distance between the legs of entry curvature is 60 feet and height of entry curvature is 15 feet. Based on the following information answer the following questions-(i) Find the equation of parabolic curvature. (ii) Find the area within the entry curvature

8. The bridge connects two hills 100 feet apart. The arch on the bridge is in a parabolic form. 4 The highest point on the bridge is 10 feet above the road at the middle of the bridge as seen in the figure.

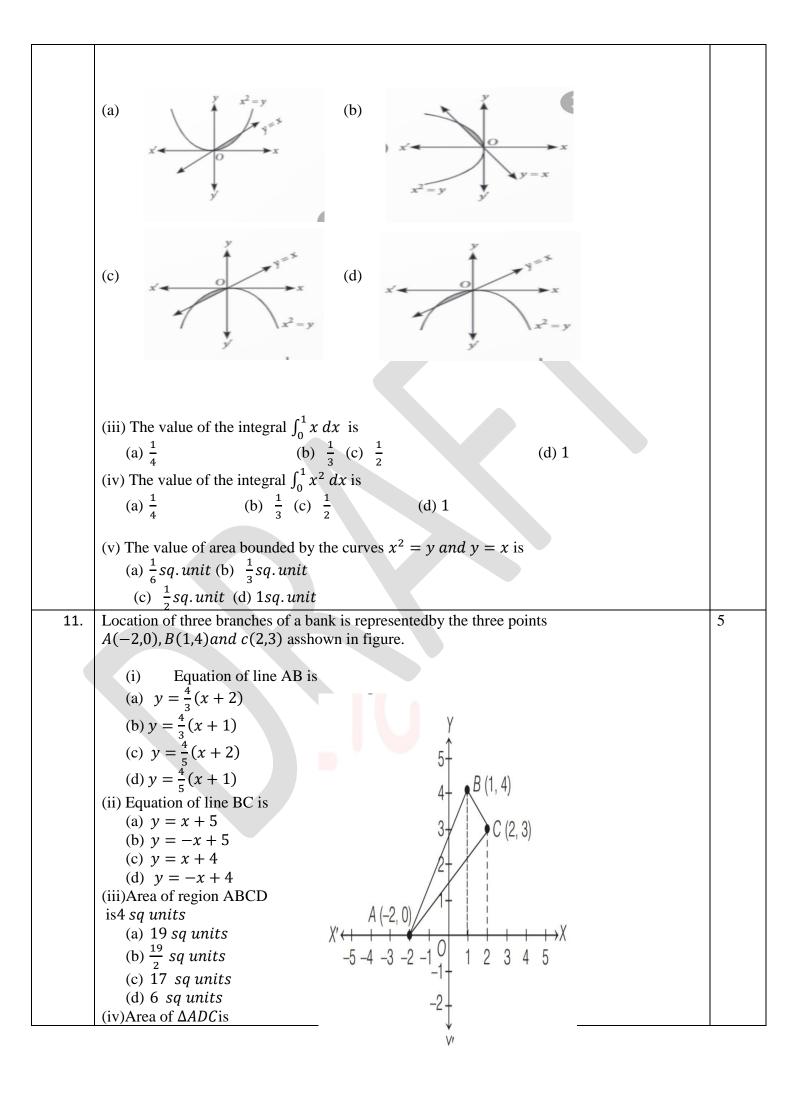



(a) $\frac{\pi}{2} sq^{2}$ (b) πsq^{2} (c) $\frac{\pi}{3} sq^{2}$ (a) $2\pi sq^{2}$	units units q units whole cake is q unit	
(c) π sq (a) $\frac{\pi}{2}$ sq (b)	unit	4
The highest p the figure. Based on the (i) The highest p (ii) The highest p (iii) The highest p (iii)	connects two hills 100 feet apart. The arch on the bridge is in a parabolic form. point on the bridge, is 10 feet above the road at the middle of the bridge as seen in a information given above, answer the following questions:	
(a (b (c	The integrand of the integral $\int_{-50}^{50} x^2 dx$ is function. (a) Even (b) Odd (c) Neither odd nor even (d) None	
(iv) T	The area formed by the curve $x^2 = 250y$, x-axis, y=0 and y=10 is	

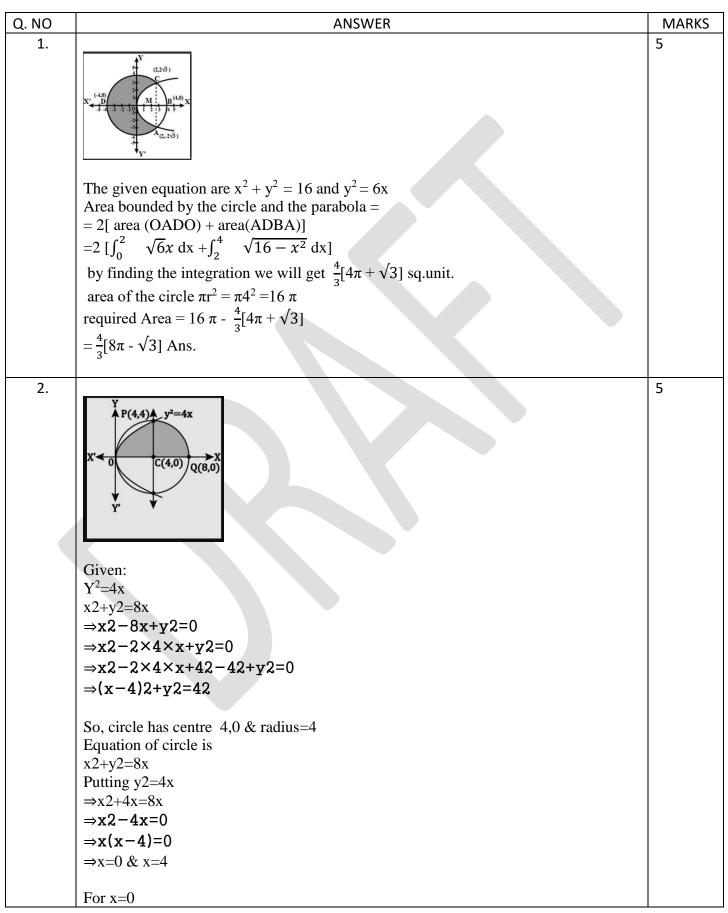
(a) $\frac{1000\sqrt{2}}{3}$	
(b) $\frac{4}{3}$	
(c) ${3}$	
(d) 0	

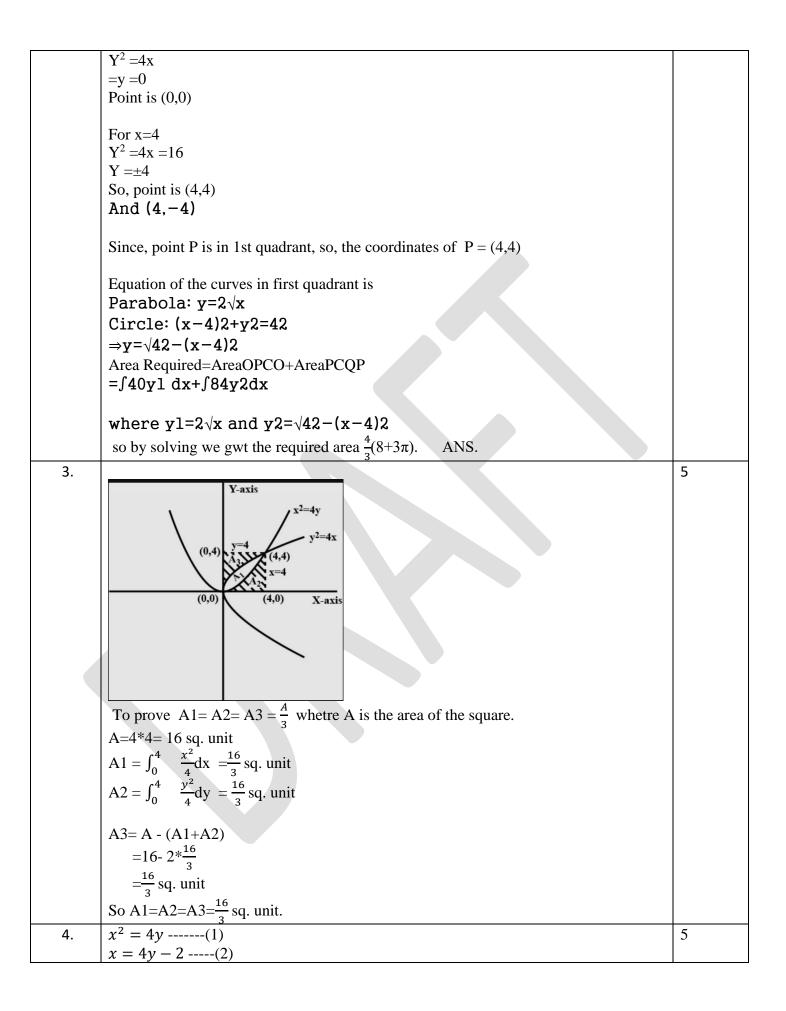
Q. NO	ANSWER	MARKS
1.	a) i b) iv c) i d) ii	4
2.	a) ii b) ii c) i d) iv	4
3.	a) ii b) iii c) iii d) iv	4
4.	(i) (c) (ii) (d) (iii) Given curve y = x(1) $x^2 + y^2 = 32(2)$	4
5.	$\begin{array}{ccc} (i) & a \\ (ii) & c \\ (iii) & a \\ (iv) & a \\ \end{array}$	4
6.	Figure of field is as follows	4

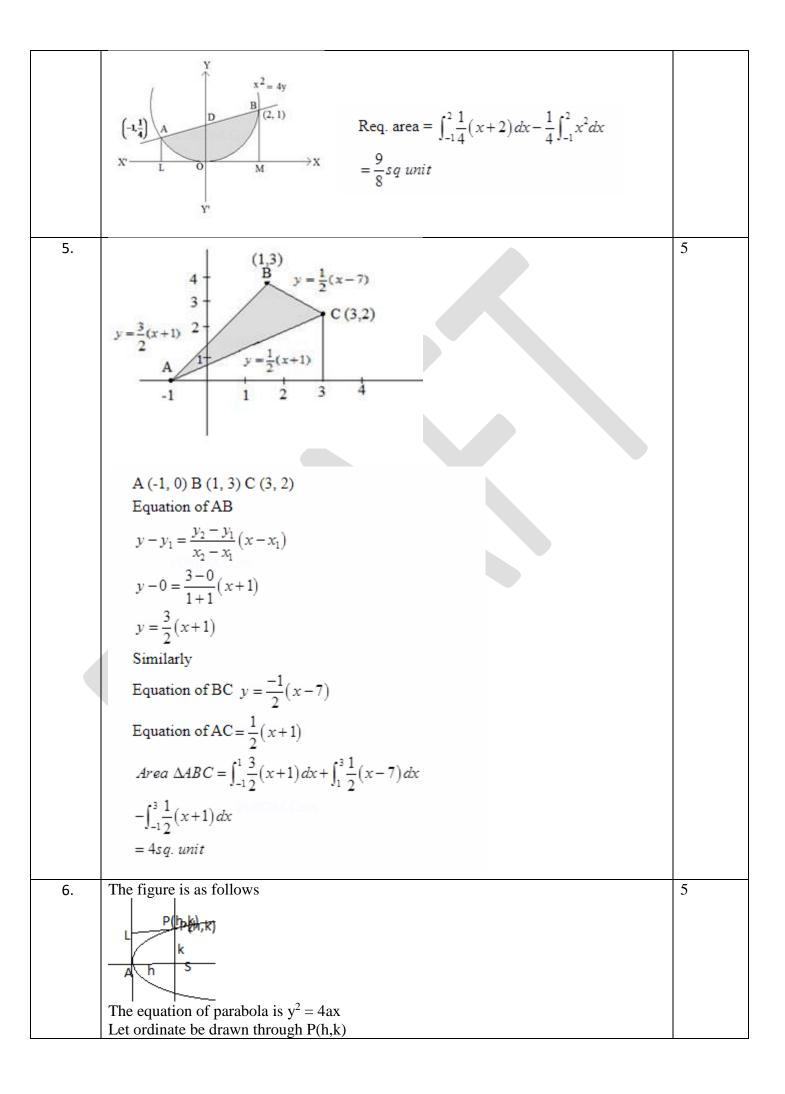
ANSWERS:



$= 2 \int_0^{10} \sqrt{250y} dy$	
$= 2 \int_{0}^{10} \sqrt{250y} dy$ = $10\sqrt{10} \left(\frac{2}{3}y^{\frac{3}{2}}\right)_{0}^{10}$ = $\frac{20\sqrt{10}}{3} \times 10\sqrt{10}$	
$-\frac{20\sqrt{10}}{10} \times 10\sqrt{10}$	
$-\frac{3}{3} \times 10010$	
$=$ ${3}$	


CHAPTER-8 APPLICATION OF INTEGRALS 05 MARK TYPE QUESTIONS


Q. NO	QUESTION	MARK	
1.	Find the area of the circle $x^2+y^2=16$ exterior to the parabola.		
2.	Find the area of the region lying above X-axis and included between the circle $x^2 + y^2 = 8x$ and inside the parabola $y^2 = 4x$.		
3.	Using integration, prove that the curves $y^2 = 4x$ and $x^2 = 4y$ divide the area of the square bounded by $x = 0$, $x = 4$, $y = 4$ and $y = 0$ into three equal parts.		
4.	Find the area bounded by the curve $x^2 = 4y$ and the line $x = 4y - 2$	5	
5.	Using integration, find the area of region bounded by the triangle whose vertices are $(-1, 0), (1, 3)$ and $(3, 2)$.	5	
6.	Show that the area cut off by a parabola in first quadrant and ordinate is one third of the corresponding rectangle formed by that ordinate and its distance from the vertex using integration.	5	
7.	Find the area of the region bounded by the curve $y = \tan x$, tangent to the curve at point at $x = \pi/4$ and the x-axis using integration.	5	
8.	A particle is moving as a elliptical curve, whose horizontally maximum distance is 8 km and vertically maximum distance is 6 km.	5	
	F1 F2 Major Axis		
	Then find the area covered by the particle.		
9.	A horse is tied to a peg at one corner of a square-shaped grass field of side 15 m by means of a 5 m long rope (see Fig.).	5	
	Find the area of that part of the field in which the horse can graze by using integration.		
10.	Consider the following equation of curves $x^2 = y$ and $y = x$ On the basis of above information, answer the following questions (i) The point(s) of intersection of both the curves is (are) (a) (0,0), (2,2) (b) (0,0), (1,1) (c) (0,0), (-2,-2) (d) (0,0), (-1,-1) (ii) Area bounded by the curves is represented by which of the following graphs?	5	



(a) 3 sq units	
(b) 4 sq units	
(c) 6 sq units	
(d) 5 sq units	
(v) Area of $\triangle ABC$ is	
(a) 7 sq units	
(b) $\frac{3}{2}$ sq units	
(c) 5 sq units	
(d) $\frac{7}{2}$ sq units	

ANSWERS:

Then $k^2 = 4ah$ or $k=2\sqrt{(ah)}$	
So area of triangle = k.h = 2h $\sqrt{(ah)}$	
	5
PT at P and part OT of x-axis	
Now $\frac{dy}{dx} = \sec^2 x = 2 \text{ at } x = \pi/4$ Also $y = \tan \pi/4 = 1$ at point $P(\pi/4, 1)$ Equation of tangent is $y - 1 = 2(x - \pi/4)$ $y = 2x + 1 - \pi/2$ When $y = 0$ then $x = \pi/2 - \frac{1}{2} = 0T$ So, $TN = ON - OT = \pi/4 - \pi/4 + \frac{1}{2} = \frac{1}{2}$ Required area is given by Area OPNO - Area of ΔPTN $= \int_0^{\pi/4} \tan x dx - \frac{1}{2} TN.PN$ $= \log\sqrt{2} - \frac{1}{4}$	
The curve is ellipse with vertex (0, 0) (0,3) (4,0) The area of the region bounded by the given ellipse = 4 × Area of the ellipse in the first quadrant Reqd. area = 4 $\int_0^4 y dx$ = 4 $\int_0^{4\frac{3}{4}} \sqrt{16 - x^2} dx$ = 12 π sq. units	5
Equation of the curve is $x^2 + y^2 = 25$ Reqd. area = area of the circle in the first quadrant. $= \int_0^5 y dx$ $= \int_0^5 \sqrt{25 - x^2} dx$	5
	Now area of triangle $= \int_0^h y dx = \int_0^h 2\sqrt{a\sqrt{x}dx} = \frac{1}{3}(2h\sqrt{ah})$ = one third of area of triangle The required area is as shown in shaded portion bounded by curve y = tan x, tangent PT at P and part OT of x-axis $(1, \pi/4)$ P $= \pi/2$ Now $\frac{60}{dx} = \sec^2 x = 2$ at $x = \pi/4$ Also y = tan $\pi/4 = 1$ at point P($\pi/4$, 1) Equation of tangent is $y - 1 = 2(x - \pi/4)$ $y = 2x + 1 - \pi/2$ When $y = 0$ then $x = \pi/2 - 1/2$ e OT So, TN = ON = OT = $\pi/4 - \pi/4 + 1/2 = 1/3$ Required area is given by Area OPNO - Area of ΔPTN $= \int_0^{\pi/4} \tan x dx = \frac{1}{2} TN.PN$ $= \log \sqrt{2} - 1/4$ $= 1/2 (\log 2 - \frac{1}{2})$ Equation of the curve is $\frac{x^2}{16} + \frac{y^2}{9} = 1$ The area of the region bounded by the given ellipse = 4 × Area of the ellipse in the first quadrant Required area = $4 \int_0^h y dx$ $= 4 \int_0^h \frac{3}{4} \sqrt{16 - x^2} dx$ $= 12 \pi$ sq. units Equation of the curve is $x^2 + y^2 = 25$ Required area = area of the circle in the first quadrant. $= \int_0^h y dx$

		$=\frac{25\pi}{4}$ sq. units	
10.	(i)	(b)We have $x^2 = y \dots \dots (1)$ and $x = y \dots \dots (2)$ From eq (1) and (2), $x^2 = x \Rightarrow x^2 - x = 0$ $\Rightarrow x(x - 1) = 0 \Rightarrow x = 0,1$ from Eq. (2) $y = 0,1$ \therefore Required points of intersection are (0,0),(1,1).	5
	(ii)	(a)	
	(iii)	(c) $\int_0^1 x dx = \left[\frac{x^2}{2}\right]_0^1 = \frac{1}{2} - 0 = \frac{1}{2}$	
	(iv)	(b) $\int_0^1 x^2 dx = \left[\frac{x^3}{3}\right]_0^1 = \frac{1}{3} - 0 = \frac{1}{3}$	
	(v)	(a) Required area $= \int_0^1 x dx - \int_0^1 x^2 dx$ $= \frac{1}{2} - \frac{1}{3} = \frac{1}{6} sq \text{ units}$	
11.	(i)	(a) Equation of line AB is given by $(y-0) = \frac{4-0}{1+2}(x+2) \Rightarrow y = \frac{4}{3}(x+2)$	5
	(ii)	(b) Equation of line BC is given by $(y-4) = \frac{3-4}{2-1}(x-1) \Rightarrow y = -x+5$	
	(iii)	(b) Area of the region ABCD = Area of $\triangle ABE$ + Area of region BCDE $=\int_{-2}^{1} \frac{4}{3} (x+2) dx \int_{1}^{2} (-x+5) dx$ $=\frac{4}{3} \left[\frac{x^{2}}{2} + 2x\right]_{-2}^{1} + \left[-\frac{x^{2}}{2} + 5x\right]_{1}^{2}$ $=\frac{4}{3} \left[\frac{1}{2} + 2 - 2 - 2 + 4\right] + \left[-2 + 10 + \frac{1}{2} - 5\right]$ $=\frac{4}{3} \cdot \frac{9}{2} + \left(\frac{1}{2} + 3\right)$ $=6 + \frac{7}{2} = \frac{19}{2} \text{ sq units}$	
	(iv)	(c) Equation of line AC is given by $(y-0) = \frac{3-0}{2+2}(x+2) \Rightarrow y = \frac{3}{4}(x+2)$ Area of $\Delta ADC = \int_{-2}^{2} \left(\frac{3}{4}(x+2)\right) dx$ $= \frac{3}{4} \left[\frac{x^2}{2} + 2x\right]_{-2}^{2} \Rightarrow \frac{3}{4}(2+4-2+4) \Rightarrow \frac{3}{4} .8 = 6 \ sq \ units$	
	(v)	(d) Area of $\triangle ABC = (iii) - (iv)$ = $\frac{19}{2} - 6 = \frac{7}{2} sq$ units	

As Per Revised CBSE Curriculum 2023-24

Classroom Teaching & Animated Videos Playlists

We take immense pleasure in serving you. Now, revel in our seamless online services completely free of charge. view our animated and classroom teaching Playlists customized for students from grade 1 to 12,Covering a wide range of subjects to enhance your comprehension and knowledge. Simply click on the provided playlist links to access **Playlists based on the latest NCERT Syllabus for 2023-24.**

content includes **Competency-Based** Our Questions, Assertion-Reason Questions, Previous Year Questions (PYQ), and Study-Based Questions to enhance your Case learning experience. For the most up-to-date videos, consider subscribing to our YouTube channel at https://www.youtube.com/@PrincipalsHandbookandDiaryadditionall y, you're encouraged to join our expanding WhatsApp community group to stay updated with the latest curriculum-related content and updates.

Nageen Group of Schools

We are committed to enriching your educational journey!!!

ANIMATED & CLASSROM TEACHING VIDEOS PLAYLISTS

(As per revised CBSE Curriculum- 2023-24)

ANIMATED VIDEOSPLAYLI	STS (CLASS 1)
Class 1 EVS(EnglishLanguage)(CBSE)	Click here for playlist
Class 1 Mathematics (EnglishLanguage)(CBSE)	Click here for Playlist
Class 1 EVS (HindiLanguage)(CBSE)	Click here for Playlist
Class 1 Mathematics(Hindi Language)(CBSE)	<u>Click here for Playlist</u>
ANIMATED VIDEOS PLAYL	ISTS (CLASS 2)
Class 2 EVS (EnglishLanguage)(CBSE)	Click here for Playlist
Class 2 Mathematics (EnglishLanguage)(CBSE)	Click here for Playlist
Class 2 EVS(HindiLanguage)(CBSE)	Click here for Playlist
Class 2 Mathematics (Hindi Language)(CBSE)	Click here for Playlist
ANIMATED VIDEOS PLAYL	ISTS (CLASS 3)
Class 3 Mathematics (EnglishLanguage)(CBSE)	Click here for Playlist
Class 3 EVS (EnglishLanguage)(CBSE)	Click here for Playlist
Class 3 EVS (HindiLanguage)(CBSE)	Click here for Playlist
Class 3 Mathematics (HindiLanguage)(CBSE)	Click here for Playlist
	· · · · · · · · · · · · · · · · · · ·
ANIMATED VIDEOS PLAYL	ISTS (CLASS 4)
Class 4 Mathematics (EnglishLanguage)(CBSE)	Click here for Playlist
Class 4 EVS(EnglishLanguage)(CBSE)	Click here for Playlist
Class 4 Mathematics (HindiLanguage)(CBSE)	Click here for Playlist
Class 4 EVS (HindiLanguage)(CBSE)	Click here for Playlist
CLASSROOM TEACHING VIDEOS	PLAYLISTS (CLASS 4)
Class 4 General Science (CBSE)	Click here for Playlist
	· · · · · · · · · · · · · · · · · · ·
ANIMATED VIDEOS PLAYL	ISTS (CLASS 5)
Class 5 Mathematics (EnglishLanguage)(CBSE)	Click here for Playlist
Class 5 Science (EnglishLanguage)(CBSE)	Click here for Playlist
Class 5 Mathematics(HindiLanguage)(CBSE)	Click here for Playlis
Class 5 Science (HindiLanguage)(CBSE)	Click here for Playlis
CLASSROOM TEACHING VIDEOS	PLAYLISTS (CLASS 5)
	PLAYLISTS (CLASS 5) Click here for Playlist

ANIMATED VIDEOS PLAYLISTS(CLASS 6)				
Class 6 Mathematics (EnglishLanguage)(CBSE)	Click here for Playlist			
Class 6 Social Science (EnglishLanguage)(CBSE)	Click here for Playlist			
Class 6 Science (EnglishLanguage) (CBSE)	Click here for Playlist			
Class 6 Mathematics (Hindi Language)(CBSE)	Click here for Playlist			
Class 6 Science All Chapters (CBSE)	Click here for Playlist			
CLASSROOM TEACHING VIDEOS PLAY				
Class 6 Mathematics (CBSE)	Click here for Playlist			
Class 6 Social Science (CBSE)	Click here for Playlist			
Class 6 Sanskrit (CBSE)	Click here for Playlist			
Class 6 Hindi (CBSE)	Click here for Playlist			
Class 6 Science (CBSE)	Click here for Playlist			
ANIMATED VIDEOS PLAYLISTS				
Class 7 Science(CBSE)	Click here for Playlist			
Class 7 Mathematics(CBSE)	Click here for Playlist			
Class 7 Social Science(CBSE)	Click here for Playlist			
Class 7 Mathematics(CBSE)	Click here for Playlist			
Class 7 Science (CBSE)	Click here for Playlist			
CLASSROOM TEACHING VIDEOS PLAN Class 7 Science (CBSE)	YLISTS (CLASS 7) Click here for Playlist			
Class 7 Hindi (CBSE)	Click here for Playlist			
Class 7 Sanskrit (CBSE)	Click here for Playlist			
Class 7 Social Science (CBSE)	Click here for Playlist			
Class 7 Mathematics (CBSE)	Click here for Playlist			
ANIMATED VIDEOS PLAYLISTS	(CLASS 8)			
Class 8 Science(CBSE)	Click here for Playlist			
Class 8 Mathematics(CBSE)	Click here for Playlist			
Class 8 Social Science(CBSE)	Click here for Playlist			
Class 8 Mathematics(CBSE)	Click here for Playlist			
Class 8 Science(CBSE)	Click here for Playlist			
CLASSROOM TEACHING VIDEOS PLAY				
Class 8 Hindi (CBSE)	Click here for Playlist			
Class 8 Sanskrit (CBSE)	Click here for Playlist			
ANIMATED VIDEOS PLAYLISTS				
Class 9 Biology(CBSE)	Click here for Playlist			
Class 9 Physics(CBSE)	Click here for Playlist			
Class 9 Chemistry(CBSE)	Click here for Playlist			
Class 9 Social Science (CBSE)	<u>Click here for Playlist</u>			

Class 9 Mathematics (CBSE)	Click here for Playlist
Class 9 Science (CBSE)	Click here for Playlist

CLASSROOM TEACHING VIDEOS PLAYLISTS (CLASS 9)		
Class 9 Social Science (CBSE)	Click here for Playlist	
Class 9 Mathematics(CBSE)	Click here for Playlist	
Class 9 English (CBSE)	Click here for Playlist	
Class 9 Hindi (CBSE)	Click here for Playlist	

	ANIMATED	VIDEOS	PLAYLISTS	CLASS 1	L O)
-					

Class 10 Biology (CBSE)	Click here for Playlist
Class 10 Physics (CBSE)	Click here for Playlist
Class 10 Chemistry (CBSE)	Click here for Playlist
Class 10 Social Science (CBSE)	Click here for Playlist
Class 10 Mathematics(CBSE) (English Language)	Click here for Playlist
Class 10 Mathematics(CBSE) (Hindi Language)	Click here for Playlist
Class 10 Science(CBSE) (Hindi Language)	Click here for Playlist

CLASSROOM TEACHING VIDEOS PLAYLISTS (CLASS 10)		
Class 10 English (CBSE)	Click here for Playlist	
Class 10 Hindi (CBSE)	Click here for Playlist	
Class 10 Mathematics (CBSE)	Click here for Playlist	
Class 10 Social Science (CBSE)	Click here for Playlist	
Class 10 Magical Science Board Exam Preparation in 1 min (CBSE)	Click here for Playlist	
Class 10: Science (CBSE)	Click here for Playlist	

ANIMATED VIDEOS PLAYLISTS (CLASS 11)		
Class 11 Physics (CBSE) (English Language)	Click here for Playlist	
Class 11 Chemistry (CBSE) (English Language)	Click here for Playlist	
Class 11 Biology (CBSE) (English Language)	Click here for Playlist	
Class 11 Mathematics(CBSE) (English Language)	Click here for Playlist	
Class 11 Accountancy (CBSE) (English Language)	Click here for Playlist	
Class 11 Business Studies (CBSE) (English Language)	Click here for Playlist	
Class 11 Statistics (CBSE) (English Language)	Click here for Playlist	
Class 11 Biology (CBSE) (Hindi Language)	Click here for Playlist	
Class 11 Mathematics (CBSE) (Hindi Language)	Click here for Playlist	
Class 11 Physics (CBSE) (Hindi Language)	Click here for Playlist	
Class 11 Chemistry (CBSE) (Hindi Language)	Click here for Playlist	
Class 11Micro Economy (CBSE) (English Language)	Click here for Playlist	

CLASSROOM TEACHING VIDEOS PLAYLISTS (CLASS 11)		
Class 11Mathematics (CBSE)	Click here for Playlist	
Class 11 Accounts (CBSE)	Click here for Playlist	
Class 11 Business Studies (CBSE)	Click here for Playlist	

Class 11 Hindi (CBSE)	Click here for Playlist
Class 11 Psychology (CBSE)	Click here for Playlist
Class 11 Economics (CBSE)	Click here for Playlist
Class 11 Physics (CBSE)	Click here for Playlist
Class 11 Chemistry (CBSE)	Click here for Playlist
Class 11 English (CBSE)	Click here for Playlist
Class 11 Biology (CBSE)	Click here for Playlist
Class 11 Biology Shorts (CBSE)	Click here for Playlist

ANIMATED VIDEOS PLAYLISTS (CLASS 12)

Class 12 Physics (CBSE)	<u>Click here for Playlist</u>
Class 12 Chemistry (CBSE)	Click here for Playlist
Class 12 Biology(CBSE)	Click here for Playlist
Class 12 Macro Economy (CBSE)	<u>Click here for Playlist</u>
Class 12Economic (CBSE)	Click here for Playlist
Class 12 Mathematics (CBSE)	<u>Click here for Playlist</u>
Class 12 Accountancy (CBSE)	Click here for Playlist
Class 12 Business Studies (CBSE)	<u>Click here for Playlist</u>
Class 12 Physics (CBSE)	<u>Click here for Playlist</u>
Class 12 Mathematics (CBSE)	Click here for Playlist
Class 12 Biology (CBSE)	Click here for Playlist
Class 12 Chemistry (CBSE)	Click here for Playlist

CLASSROOM TEACHING VIDEOS PLAYLISTS (CLASS 12)		
Class 12 CHEMISTRY (CBSE)	Click here for Playlist	
Class 12 Business Studies (CBSE)	Click here for Playlist	
Class 12 Hindi (CBSE)	Click here for Playlist	
NEET Biology in 1 min	Click here for Playlist	
Class 12 History (CBSE)	Click here for Playlist	
Class 12 Political Science (CBSE)	Click here for Playlist	
Class 12 Physics (CBSE)	Click here for Playlist	
Class 12 Biology (CBSE)	Click here for Playlist	
Class 12 : Accounts (CBSE)	Click here for Playlist	

SCHOOL OF EDUCATORS

You will get Pre- Board Papers PDF, Word file, PPT, Lesson Plan, Worksheet, practical tips and Viva questions, reference books, smart content, curriculum, syllabus, marking scheme, toppers answer scripts, revised exam pattern, revised syllabus, Blue Print etc. here .Join Your Subject WhatsApp Group.

Rules & Regulations of the Group

- 1. No introduction
- 2. No Good Morning/Any wish type message
- 3.No personal Chats & Messages
- 4. No Spam
- 5. You can also ask your difficulties here.

Just get learning resources & post learning resources. Helpline number only WhatsApp: +91-95208-77777

Julearn /

Why Artham Resource Material?

Resource materials for teachers and students are essential tools for effective teaching and learning. They provide valuable information, guidance, and support to both teachers and students, making the teaching and learning process more efficient and productive.

For teachers, Artham resource materials include lesson plans, instructional guides, assessment tools, professional development materials, and teaching aids. These materials are well researched and created according to 2023-24 NEP and NCERT guidelines.

For students, resource materials can include textbooks, study guides, homework assignments, reference books, online learning platforms, and educational videos. These materials can be obtained from school libraries, educational publishers, online resources, and teachers.

Both teachers and students can also benefit from Artham educational resources which are free and openly licensed educational materials that can be used and shared for teaching and learning. Artham resource material include textbooks, courses, lesson plans, and multimedia resources that are available online.

In summary, resource materials are critical components of effective teaching and learning. They provide a wealth of information and support that can enhance the quality of education and help students achieve academic success.

Teachers and students can also purchase these resources from the links provided with every resource.

JOIN TELEGRAM GROUP/CHANNELS FOR CLASS WISE HIGH QUALITY RESOURCE MATERIAL

SOE CBSE Groups

- <u>Click to Join CBSE Group...All classes</u>
- <u>Click to Join SOE CBSE Kindergarten Group</u>
- <u>Click to Join SOE CBSE Class 1 Group</u>
- Click to Join SOE CBSE Class 2 Group
- Click to Join SOE CBSE Class 3 Group
- Click to Join SOE CBSE Class 4 Group
- Click to Join SOE CBSE Class 5 Group
- Click to Join SOE CBSE Class 6 Group
- Click to Join SOE CBSE Class 7 Group
- Click to Join SOE CBSE Class 8 Group
- Click to Join SOE CBSE Class 9 Group
- <u>Click to Join SOE CBSE Class 10 Group</u>
- Click to Join SOE CBSE Class 11 (Science) Group
- <u>Click to Join SOE CBSE Class 11 (Commerce) Group</u>
- <u>Click to Join SOE CBSE Class 11 (Humanities) Group</u>
- <u>Click to Join SOE CBSE Class 12 (Science) Group</u>
- <u>Click to Join SOE CBSE Class 12(Commerce) Group</u>

- <u>Click to Join SOE CBSE Class 12 (Humanities) Group</u>
- <u>Click to Join SOE JEE/NEET Group</u>
- <u>Click to Join SOE CUET Group</u>
- <u>Click to Join SOE NDA, OLYMPIAD, NTSE Group</u>
- <u>Click to Join SOE School Principal Professional Development Group</u>
- <u>Click to Join SOE School Teacher Professional Development Group</u>
- <u>Click to Join SOE CBSE Project File Group for Class 9th to 12th All Subjects</u>

SOE ICSE Groups

- <u>Click to Join SOE ICSE Kindergarten Group</u>
- <u>Click to Join SOE ICSE Class 1 Group</u>
- <u>Click to Join SOE ICSE Class 2 Group</u>
- <u>Click to Join SOE ICSE Class 3 Group</u>
- <u>Click to Join SOE ICSE Class 4 Group</u>
- <u>Click to Join SOE ICSE Class 5 Group</u>
- Click to Join SOE ICSE Class 6 Group
- Click to Join SOE ICSE Class 7 Group
- <u>Click to Join SOE ICSE Class 8 Group</u>
- <u>Click to Join SOE ICSE Class 9 Group</u>
- Click to Join SOE ICSE Class 10 Group
- <u>Click to Join SOE ICSE Class 11 (Science) Group</u>
- <u>Click to Join SOE ICSE Class 11 (Commerce) Group</u>
- <u>Click to Join SOE ICSE Class 11 (Humanities) Group</u>
- <u>Click to Join SOE ICSE Class 12 (Science) Group</u>
- <u>Click to Join SOE ICSE Class 12(Commerce) Group</u>
- <u>Click to Join SOE ICSE Class 12 (Humanities) Group</u>
- <u>Click to Join SOE JEE/NEET Group</u>
- <u>Click to Join SOE CUET Group</u>
- <u>Click to Join SOE NDA, OLYMPIAD, NTSE Group</u>
- <u>Click to Join SOE School Principal Professional Development Group</u>
- <u>Click to Join SOE School Teacher Professional Development Group</u>

Nageen CBSE Channels

- <u>Click to Join Nageen CBSE Kindergarten Channel</u>
- <u>Click to Join Nageen CBSE Class 1 Channel</u>
- <u>Click to Join Nageen CBSE Class 2 Channel</u>
- <u>Click to Join Nageen CBSE Class 3 Channel</u>
- <u>Click to Join Nageen CBSE Class 4 Channel</u>
- Click to Join Nageen CBSE Class 5 Channel
- Click to Join Nageen CBSE Class 6 Channel
- Click to Join Nageen CBSE Class 7 Channel
- Click to Join Nageen CBSE Class 8 Channel
- Click to Join Nageen CBSE Class 9 Channel
- Click to Join Nageen CBSE Class 10 Channel
- Click to Join Nageen CBSE Class 11 (Science) Channel
- Click to Join Nageen CBSE Class 11 (Humanities) Channel
- Click to Join Nageen CBSE Class 11 (Commerce) Channel
- Click to Join Nageen CBSE Class 12 (Science) Channel
- <u>Click to Join Nageen CBSE Class 12 (Commerce) Channel</u>
- <u>Click to Join Nageen CBSE Class 12 (Humanities) Channel</u>

- Click to Join JEE/NEET Channel
- <u>Click to Join CUET Channel</u>
- <u>Click to Join NDA, OLYMPIAD, NTSE Channel</u>

Nageen ICSE Channels

- <u>Click to Join Nageen ICSE Kindergarten Channel</u>
- <u>Click to Join Nageen ICSE Class 1 Channel</u>
- <u>Click to Join Nageen ICSE Class 2 Channel</u>
- <u>Click to Join Nageen ICSE Class 3 Channel</u>
- <u>Click to Join Nageen ICSE Class 4 Channel</u>
- <u>Click to Join Nageen ICSE Class 5 Channel</u>
- <u>Click to Join Nageen ICSE Class 6 Channel</u>
- <u>Click to Join Nageen ICSE Class 7 Channel</u>
- <u>Click to Join Nageen ICSE Class 8 Channel</u>
- <u>Click to Join Nageen ICSE Class 9 Channel</u>
- <u>Click to Join Nageen ICSE Class 10 Channel</u>
- <u>Click to Join Nageen ICSE Class 11 (Science) Channel</u>
- <u>Click to Join Nageen ICSE Class 11 (Commerce) Channel</u>
- <u>Click to Join Nageen ICSE Class 11 (Humanities) Channel</u>
- <u>Click to Join Nageen ICSE Class 12 (Science) Channel</u>
- <u>Click to Join Nageen ICSE Class 12 (Commerce) Channel</u>
- <u>Click to Join Nageen ICSE Class 12 (Humanities) Channel</u>
- <u>Click to Join JEE/NEET Channel</u>
- <u>Click to Join CUET Channel</u>
- <u>Click to Join NDA, OLYMPIAD, NTSE Channel</u>